Identifier
Values
[3] => ([],3) => [1,1,1] => [1,1] => 1
[1,3] => ([(2,3)],4) => [2,1,1] => [1,1] => 1
[4] => ([],4) => [1,1,1,1] => [1,1,1] => 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => 1
[1,4] => ([(3,4)],5) => [2,1,1,1] => [1,1,1] => 1
[2,3] => ([(2,4),(3,4)],5) => [3,1,1] => [1,1] => 1
[5] => ([],5) => [1,1,1,1,1] => [1,1,1,1] => 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
[1,5] => ([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
[2,4] => ([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 1
[3,3] => ([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
[6] => ([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => 1
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
[1,6] => ([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
[2,5] => ([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 1
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
[3,4] => ([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
[7] => ([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => 1
[1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => 1
[1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => 1
[1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => 1
[1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => 1
[2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => 1
[2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => 1
[2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => 1
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => 1
[3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => 1
[4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => 1
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => [5,1,1,1] => [1,1,1] => 1
[8] => ([],8) => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 1
search for individual values
searching the database for the individual values of this statistic
Description
The Plancherel distribution on integer partitions.
This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions.
Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
first row removal
Description
Removes the first entry of an integer partition