Identifier
-
Mp00094:
Integer compositions
—to binary word⟶
Binary words
Mp00234: Binary words —valleys-to-peaks⟶ Binary words
St000288: Binary words ⟶ ℤ
Values
[1] => 1 => 1 => 1
[1,1] => 11 => 11 => 2
[2] => 10 => 11 => 2
[1,1,1] => 111 => 111 => 3
[1,2] => 110 => 111 => 3
[2,1] => 101 => 110 => 2
[3] => 100 => 101 => 2
[1,1,1,1] => 1111 => 1111 => 4
[1,1,2] => 1110 => 1111 => 4
[1,2,1] => 1101 => 1110 => 3
[1,3] => 1100 => 1101 => 3
[2,1,1] => 1011 => 1101 => 3
[2,2] => 1010 => 1101 => 3
[3,1] => 1001 => 1010 => 2
[4] => 1000 => 1001 => 2
[1,1,1,1,1] => 11111 => 11111 => 5
[1,1,1,2] => 11110 => 11111 => 5
[1,1,2,1] => 11101 => 11110 => 4
[1,1,3] => 11100 => 11101 => 4
[1,2,1,1] => 11011 => 11101 => 4
[1,2,2] => 11010 => 11101 => 4
[1,3,1] => 11001 => 11010 => 3
[1,4] => 11000 => 11001 => 3
[2,1,1,1] => 10111 => 11011 => 4
[2,1,2] => 10110 => 11011 => 4
[2,2,1] => 10101 => 11010 => 3
[2,3] => 10100 => 11001 => 3
[3,1,1] => 10011 => 10101 => 3
[3,2] => 10010 => 10101 => 3
[4,1] => 10001 => 10010 => 2
[5] => 10000 => 10001 => 2
[1,1,1,1,1,1] => 111111 => 111111 => 6
[1,1,1,1,2] => 111110 => 111111 => 6
[1,1,1,2,1] => 111101 => 111110 => 5
[1,1,1,3] => 111100 => 111101 => 5
[1,1,2,1,1] => 111011 => 111101 => 5
[1,1,2,2] => 111010 => 111101 => 5
[1,1,3,1] => 111001 => 111010 => 4
[1,1,4] => 111000 => 111001 => 4
[1,2,1,1,1] => 110111 => 111011 => 5
[1,2,1,2] => 110110 => 111011 => 5
[1,2,2,1] => 110101 => 111010 => 4
[1,2,3] => 110100 => 111001 => 4
[1,3,1,1] => 110011 => 110101 => 4
[1,3,2] => 110010 => 110101 => 4
[1,4,1] => 110001 => 110010 => 3
[1,5] => 110000 => 110001 => 3
[2,1,1,1,1] => 101111 => 110111 => 5
[2,1,1,2] => 101110 => 110111 => 5
[2,1,2,1] => 101101 => 110110 => 4
[2,1,3] => 101100 => 110101 => 4
[2,2,1,1] => 101011 => 110101 => 4
[2,2,2] => 101010 => 110101 => 4
[2,3,1] => 101001 => 110010 => 3
[2,4] => 101000 => 110001 => 3
[3,1,1,1] => 100111 => 101011 => 4
[3,1,2] => 100110 => 101011 => 4
[3,2,1] => 100101 => 101010 => 3
[3,3] => 100100 => 101001 => 3
[4,1,1] => 100011 => 100101 => 3
[4,2] => 100010 => 100101 => 3
[5,1] => 100001 => 100010 => 2
[6] => 100000 => 100001 => 2
[1,1,1,1,1,1,1] => 1111111 => 1111111 => 7
[1,1,1,1,1,2] => 1111110 => 1111111 => 7
[1,1,1,1,2,1] => 1111101 => 1111110 => 6
[1,1,1,1,3] => 1111100 => 1111101 => 6
[1,1,1,2,1,1] => 1111011 => 1111101 => 6
[1,1,1,2,2] => 1111010 => 1111101 => 6
[1,1,1,3,1] => 1111001 => 1111010 => 5
[1,1,1,4] => 1111000 => 1111001 => 5
[1,1,2,1,1,1] => 1110111 => 1111011 => 6
[1,1,2,1,2] => 1110110 => 1111011 => 6
[1,1,2,2,1] => 1110101 => 1111010 => 5
[1,1,2,3] => 1110100 => 1111001 => 5
[1,1,3,1,1] => 1110011 => 1110101 => 5
[1,1,3,2] => 1110010 => 1110101 => 5
[1,1,4,1] => 1110001 => 1110010 => 4
[1,1,5] => 1110000 => 1110001 => 4
[1,2,1,1,1,1] => 1101111 => 1110111 => 6
[1,2,1,1,2] => 1101110 => 1110111 => 6
[1,2,1,2,1] => 1101101 => 1110110 => 5
[1,2,1,3] => 1101100 => 1110101 => 5
[1,2,2,1,1] => 1101011 => 1110101 => 5
[1,2,2,2] => 1101010 => 1110101 => 5
[1,2,3,1] => 1101001 => 1110010 => 4
[1,2,4] => 1101000 => 1110001 => 4
[1,3,1,1,1] => 1100111 => 1101011 => 5
[1,3,1,2] => 1100110 => 1101011 => 5
[1,3,2,1] => 1100101 => 1101010 => 4
[1,3,3] => 1100100 => 1101001 => 4
[1,4,1,1] => 1100011 => 1100101 => 4
[1,4,2] => 1100010 => 1100101 => 4
[1,5,1] => 1100001 => 1100010 => 3
[1,6] => 1100000 => 1100001 => 3
[2,1,1,1,1,1] => 1011111 => 1101111 => 6
[2,1,1,1,2] => 1011110 => 1101111 => 6
[2,1,1,2,1] => 1011101 => 1101110 => 5
[2,1,1,3] => 1011100 => 1101101 => 5
[2,1,2,1,1] => 1011011 => 1101101 => 5
[2,1,2,2] => 1011010 => 1101101 => 5
>>> Load all 367 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
This is also known as the Hamming weight of the word.
Map
valleys-to-peaks
Description
Return the binary word with every valley replaced by a peak.
A valley in a binary word is a subsequence $01$, or a trailing $0$. A peak is a subsequence $10$ or a trailing $1$. This map replaces every valley with a peak.
A valley in a binary word is a subsequence $01$, or a trailing $0$. A peak is a subsequence $10$ or a trailing $1$. This map replaces every valley with a peak.
Map
to binary word
Description
Return the composition as a binary word, treating ones as separators.
Encoding a positive integer $i$ as the word $10\dots 0$ consisting of a one followed by $i-1$ zeros, the binary word of a composition $(i_1,\dots,i_k)$ is the concatenation of of words for $i_1,\dots,i_k$.
The image of this map contains precisely the words which do not begin with a $0$.
Encoding a positive integer $i$ as the word $10\dots 0$ consisting of a one followed by $i-1$ zeros, the binary word of a composition $(i_1,\dots,i_k)$ is the concatenation of of words for $i_1,\dots,i_k$.
The image of this map contains precisely the words which do not begin with a $0$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!