Processing math: 100%

Identifier
Values
[[1]] => [1] => [1] => ([],1) => 1
[[1,2]] => [2] => [2] => ([],2) => 2
[[1],[2]] => [2] => [2] => ([],2) => 2
[[1,2,3]] => [3] => [3] => ([],3) => 3
[[1,3],[2]] => [2,1] => [1,2] => ([(1,2)],3) => 1
[[1,2],[3]] => [3] => [3] => ([],3) => 3
[[1],[2],[3]] => [3] => [3] => ([],3) => 3
[[1,2,3,4]] => [4] => [4] => ([],4) => 4
[[1,3,4],[2]] => [2,2] => [2,2] => ([(1,3),(2,3)],4) => 1
[[1,2,4],[3]] => [3,1] => [1,3] => ([(2,3)],4) => 2
[[1,2,3],[4]] => [4] => [4] => ([],4) => 4
[[1,3],[2,4]] => [2,2] => [2,2] => ([(1,3),(2,3)],4) => 1
[[1,2],[3,4]] => [3,1] => [1,3] => ([(2,3)],4) => 2
[[1,4],[2],[3]] => [3,1] => [1,3] => ([(2,3)],4) => 2
[[1,3],[2],[4]] => [2,2] => [2,2] => ([(1,3),(2,3)],4) => 1
[[1,2],[3],[4]] => [4] => [4] => ([],4) => 4
[[1],[2],[3],[4]] => [4] => [4] => ([],4) => 4
[[1,2,3,4,5]] => [5] => [5] => ([],5) => 5
[[1,3,4,5],[2]] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 1
[[1,2,4,5],[3]] => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
[[1,2,3,5],[4]] => [4,1] => [1,4] => ([(3,4)],5) => 3
[[1,2,3,4],[5]] => [5] => [5] => ([],5) => 5
[[1,3,5],[2,4]] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
[[1,2,5],[3,4]] => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
[[1,3,4],[2,5]] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 1
[[1,2,4],[3,5]] => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
[[1,2,3],[4,5]] => [4,1] => [1,4] => ([(3,4)],5) => 3
[[1,4,5],[2],[3]] => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
[[1,3,5],[2],[4]] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
[[1,2,5],[3],[4]] => [4,1] => [1,4] => ([(3,4)],5) => 3
[[1,3,4],[2],[5]] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 1
[[1,2,4],[3],[5]] => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
[[1,2,3],[4],[5]] => [5] => [5] => ([],5) => 5
[[1,4],[2,5],[3]] => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
[[1,3],[2,5],[4]] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
[[1,2],[3,5],[4]] => [4,1] => [1,4] => ([(3,4)],5) => 3
[[1,3],[2,4],[5]] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 1
[[1,2],[3,4],[5]] => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
[[1,5],[2],[3],[4]] => [4,1] => [1,4] => ([(3,4)],5) => 3
[[1,4],[2],[3],[5]] => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
[[1,3],[2],[4],[5]] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 1
[[1,2],[3],[4],[5]] => [5] => [5] => ([],5) => 5
[[1],[2],[3],[4],[5]] => [5] => [5] => ([],5) => 5
[[1,2,3,4,5,6]] => [6] => [6] => ([],6) => 6
[[1,3,4,5,6],[2]] => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 1
[[1,2,4,5,6],[3]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,2,3,5,6],[4]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,2,3,4,6],[5]] => [5,1] => [1,5] => ([(4,5)],6) => 4
[[1,2,3,4,5],[6]] => [6] => [6] => ([],6) => 6
[[1,3,5,6],[2,4]] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,5,6],[3,4]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,3,4,6],[2,5]] => [2,3,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,4,6],[3,5]] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,3,6],[4,5]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,3,4,5],[2,6]] => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 1
[[1,2,4,5],[3,6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,2,3,5],[4,6]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,2,3,4],[5,6]] => [5,1] => [1,5] => ([(4,5)],6) => 4
[[1,4,5,6],[2],[3]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,3,5,6],[2],[4]] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,5,6],[3],[4]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,3,4,6],[2],[5]] => [2,3,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,4,6],[3],[5]] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,3,6],[4],[5]] => [5,1] => [1,5] => ([(4,5)],6) => 4
[[1,3,4,5],[2],[6]] => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 1
[[1,2,4,5],[3],[6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,2,3,5],[4],[6]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,2,3,4],[5],[6]] => [6] => [6] => ([],6) => 6
[[1,3,5],[2,4,6]] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,5],[3,4,6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,3,4],[2,5,6]] => [2,3,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,4],[3,5,6]] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,3],[4,5,6]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,4,6],[2,5],[3]] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,3,6],[2,5],[4]] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,6],[3,5],[4]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,3,6],[2,4],[5]] => [2,3,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,6],[3,4],[5]] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,4,5],[2,6],[3]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,3,5],[2,6],[4]] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,5],[3,6],[4]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,3,4],[2,6],[5]] => [2,3,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,4],[3,6],[5]] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,3],[4,6],[5]] => [5,1] => [1,5] => ([(4,5)],6) => 4
[[1,3,5],[2,4],[6]] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,5],[3,4],[6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,3,4],[2,5],[6]] => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 1
[[1,2,4],[3,5],[6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,2,3],[4,5],[6]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,5,6],[2],[3],[4]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,4,6],[2],[3],[5]] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,3,6],[2],[4],[5]] => [2,3,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2,6],[3],[4],[5]] => [5,1] => [1,5] => ([(4,5)],6) => 4
[[1,4,5],[2],[3],[6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,3,5],[2],[4],[6]] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2,5],[3],[4],[6]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,3,4],[2],[5],[6]] => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 1
[[1,2,4],[3],[5],[6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,2,3],[4],[5],[6]] => [6] => [6] => ([],6) => 6
[[1,4],[2,5],[3,6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,3],[2,5],[4,6]] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
>>> Load all 119 entries. <<<
[[1,2],[3,5],[4,6]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,3],[2,4],[5,6]] => [2,3,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2],[3,4],[5,6]] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,5],[2,6],[3],[4]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,4],[2,6],[3],[5]] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,3],[2,6],[4],[5]] => [2,3,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2],[3,6],[4],[5]] => [5,1] => [1,5] => ([(4,5)],6) => 4
[[1,4],[2,5],[3],[6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,3],[2,5],[4],[6]] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1,2],[3,5],[4],[6]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,3],[2,4],[5],[6]] => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 1
[[1,2],[3,4],[5],[6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,6],[2],[3],[4],[5]] => [5,1] => [1,5] => ([(4,5)],6) => 4
[[1,5],[2],[3],[4],[6]] => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 3
[[1,4],[2],[3],[5],[6]] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[[1,3],[2],[4],[5],[6]] => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 1
[[1,2],[3],[4],[5],[6]] => [6] => [6] => ([],6) => 6
[[1],[2],[3],[4],[5],[6]] => [6] => [6] => ([],6) => 6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of isolated vertices of a graph.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
valley composition
Description
The composition corresponding to the valley set of a standard tableau.
Let T be a standard tableau of size n.
An entry i of T is a descent if i+1 is in a lower row (in English notation), otherwise i is an ascent.
An entry 2in1 is a valley if i1 is a descent and i is an ascent.
This map returns the composition c1,,ck of n such that {c1,c1+c2,,c1++ck} is the valley set of T.
Map
rotate back to front
Description
The back to front rotation of an integer composition.