Identifier
Values
0 => [2] => [[2],[]] => [] => 1
1 => [1,1] => [[1,1],[]] => [] => 1
00 => [3] => [[3],[]] => [] => 1
01 => [2,1] => [[2,2],[1]] => [1] => 2
10 => [1,2] => [[2,1],[]] => [] => 1
11 => [1,1,1] => [[1,1,1],[]] => [] => 1
000 => [4] => [[4],[]] => [] => 1
001 => [3,1] => [[3,3],[2]] => [2] => 2
010 => [2,2] => [[3,2],[1]] => [1] => 2
011 => [2,1,1] => [[2,2,2],[1,1]] => [1,1] => 2
100 => [1,3] => [[3,1],[]] => [] => 1
101 => [1,2,1] => [[2,2,1],[1]] => [1] => 2
110 => [1,1,2] => [[2,1,1],[]] => [] => 1
111 => [1,1,1,1] => [[1,1,1,1],[]] => [] => 1
0000 => [5] => [[5],[]] => [] => 1
0001 => [4,1] => [[4,4],[3]] => [3] => 2
0010 => [3,2] => [[4,3],[2]] => [2] => 2
0011 => [3,1,1] => [[3,3,3],[2,2]] => [2,2] => 2
0100 => [2,3] => [[4,2],[1]] => [1] => 2
0101 => [2,2,1] => [[3,3,2],[2,1]] => [2,1] => 3
0110 => [2,1,2] => [[3,2,2],[1,1]] => [1,1] => 2
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]] => [1,1,1] => 2
1000 => [1,4] => [[4,1],[]] => [] => 1
1001 => [1,3,1] => [[3,3,1],[2]] => [2] => 2
1010 => [1,2,2] => [[3,2,1],[1]] => [1] => 2
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]] => [1,1] => 2
1100 => [1,1,3] => [[3,1,1],[]] => [] => 1
1101 => [1,1,2,1] => [[2,2,1,1],[1]] => [1] => 2
1110 => [1,1,1,2] => [[2,1,1,1],[]] => [] => 1
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]] => [] => 1
00000 => [6] => [[6],[]] => [] => 1
00001 => [5,1] => [[5,5],[4]] => [4] => 2
00010 => [4,2] => [[5,4],[3]] => [3] => 2
00011 => [4,1,1] => [[4,4,4],[3,3]] => [3,3] => 2
00100 => [3,3] => [[5,3],[2]] => [2] => 2
00101 => [3,2,1] => [[4,4,3],[3,2]] => [3,2] => 3
00110 => [3,1,2] => [[4,3,3],[2,2]] => [2,2] => 2
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]] => [2,2,2] => 2
01000 => [2,4] => [[5,2],[1]] => [1] => 2
01001 => [2,3,1] => [[4,4,2],[3,1]] => [3,1] => 3
01010 => [2,2,2] => [[4,3,2],[2,1]] => [2,1] => 3
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]] => [2,2,1] => 3
01100 => [2,1,3] => [[4,2,2],[1,1]] => [1,1] => 2
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]] => [2,1,1] => 3
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]] => [1,1,1] => 2
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => 2
10000 => [1,5] => [[5,1],[]] => [] => 1
10001 => [1,4,1] => [[4,4,1],[3]] => [3] => 2
10010 => [1,3,2] => [[4,3,1],[2]] => [2] => 2
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]] => [2,2] => 2
10100 => [1,2,3] => [[4,2,1],[1]] => [1] => 2
10101 => [1,2,2,1] => [[3,3,2,1],[2,1]] => [2,1] => 3
10110 => [1,2,1,2] => [[3,2,2,1],[1,1]] => [1,1] => 2
10111 => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => [1,1,1] => 2
11000 => [1,1,4] => [[4,1,1],[]] => [] => 1
11001 => [1,1,3,1] => [[3,3,1,1],[2]] => [2] => 2
11010 => [1,1,2,2] => [[3,2,1,1],[1]] => [1] => 2
11011 => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => [1,1] => 2
11100 => [1,1,1,3] => [[3,1,1,1],[]] => [] => 1
11101 => [1,1,1,2,1] => [[2,2,1,1,1],[1]] => [1] => 2
11110 => [1,1,1,1,2] => [[2,1,1,1,1],[]] => [] => 1
11111 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => [] => 1
000000 => [7] => [[7],[]] => [] => 1
000001 => [6,1] => [[6,6],[5]] => [5] => 2
000010 => [5,2] => [[6,5],[4]] => [4] => 2
000011 => [5,1,1] => [[5,5,5],[4,4]] => [4,4] => 2
000100 => [4,3] => [[6,4],[3]] => [3] => 2
000101 => [4,2,1] => [[5,5,4],[4,3]] => [4,3] => 3
000110 => [4,1,2] => [[5,4,4],[3,3]] => [3,3] => 2
000111 => [4,1,1,1] => [[4,4,4,4],[3,3,3]] => [3,3,3] => 2
001000 => [3,4] => [[6,3],[2]] => [2] => 2
001001 => [3,3,1] => [[5,5,3],[4,2]] => [4,2] => 3
001010 => [3,2,2] => [[5,4,3],[3,2]] => [3,2] => 3
001011 => [3,2,1,1] => [[4,4,4,3],[3,3,2]] => [3,3,2] => 3
001100 => [3,1,3] => [[5,3,3],[2,2]] => [2,2] => 2
001101 => [3,1,2,1] => [[4,4,3,3],[3,2,2]] => [3,2,2] => 3
001110 => [3,1,1,2] => [[4,3,3,3],[2,2,2]] => [2,2,2] => 2
001111 => [3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]] => [2,2,2,2] => 2
010000 => [2,5] => [[6,2],[1]] => [1] => 2
010001 => [2,4,1] => [[5,5,2],[4,1]] => [4,1] => 3
010010 => [2,3,2] => [[5,4,2],[3,1]] => [3,1] => 3
010011 => [2,3,1,1] => [[4,4,4,2],[3,3,1]] => [3,3,1] => 3
010100 => [2,2,3] => [[5,3,2],[2,1]] => [2,1] => 3
010101 => [2,2,2,1] => [[4,4,3,2],[3,2,1]] => [3,2,1] => 4
010110 => [2,2,1,2] => [[4,3,3,2],[2,2,1]] => [2,2,1] => 3
010111 => [2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => [2,2,2,1] => 3
011000 => [2,1,4] => [[5,2,2],[1,1]] => [1,1] => 2
011001 => [2,1,3,1] => [[4,4,2,2],[3,1,1]] => [3,1,1] => 3
011010 => [2,1,2,2] => [[4,3,2,2],[2,1,1]] => [2,1,1] => 3
011011 => [2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => [2,2,1,1] => 3
011100 => [2,1,1,3] => [[4,2,2,2],[1,1,1]] => [1,1,1] => 2
011101 => [2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => [2,1,1,1] => 3
011110 => [2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => 2
011111 => [2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => [1,1,1,1,1] => 2
100000 => [1,6] => [[6,1],[]] => [] => 1
100001 => [1,5,1] => [[5,5,1],[4]] => [4] => 2
100010 => [1,4,2] => [[5,4,1],[3]] => [3] => 2
100011 => [1,4,1,1] => [[4,4,4,1],[3,3]] => [3,3] => 2
100100 => [1,3,3] => [[5,3,1],[2]] => [2] => 2
100101 => [1,3,2,1] => [[4,4,3,1],[3,2]] => [3,2] => 3
100110 => [1,3,1,2] => [[4,3,3,1],[2,2]] => [2,2] => 2
>>> Load all 243 entries. <<<
100111 => [1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]] => [2,2,2] => 2
101000 => [1,2,4] => [[5,2,1],[1]] => [1] => 2
101001 => [1,2,3,1] => [[4,4,2,1],[3,1]] => [3,1] => 3
101010 => [1,2,2,2] => [[4,3,2,1],[2,1]] => [2,1] => 3
101011 => [1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => [2,2,1] => 3
101100 => [1,2,1,3] => [[4,2,2,1],[1,1]] => [1,1] => 2
101101 => [1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => [2,1,1] => 3
101110 => [1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => [1,1,1] => 2
101111 => [1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]] => [1,1,1,1] => 2
110000 => [1,1,5] => [[5,1,1],[]] => [] => 1
110001 => [1,1,4,1] => [[4,4,1,1],[3]] => [3] => 2
110010 => [1,1,3,2] => [[4,3,1,1],[2]] => [2] => 2
110011 => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => [2,2] => 2
110100 => [1,1,2,3] => [[4,2,1,1],[1]] => [1] => 2
110101 => [1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => [2,1] => 3
110110 => [1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => [1,1] => 2
110111 => [1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => [1,1,1] => 2
111000 => [1,1,1,4] => [[4,1,1,1],[]] => [] => 1
111001 => [1,1,1,3,1] => [[3,3,1,1,1],[2]] => [2] => 2
111010 => [1,1,1,2,2] => [[3,2,1,1,1],[1]] => [1] => 2
111011 => [1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => [1,1] => 2
111100 => [1,1,1,1,3] => [[3,1,1,1,1],[]] => [] => 1
111101 => [1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]] => [1] => 2
111110 => [1,1,1,1,1,2] => [[2,1,1,1,1,1],[]] => [] => 1
111111 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => [] => 1
0000000 => [8] => [[8],[]] => [] => 1
0000001 => [7,1] => [[7,7],[6]] => [6] => 2
0000011 => [6,1,1] => [[6,6,6],[5,5]] => [5,5] => 2
0001000 => [4,4] => [[7,4],[3]] => [3] => 2
0001001 => [4,3,1] => [[6,6,4],[5,3]] => [5,3] => 3
0001010 => [4,2,2] => [[6,5,4],[4,3]] => [4,3] => 3
0001011 => [4,2,1,1] => [[5,5,5,4],[4,4,3]] => [4,4,3] => 3
0001100 => [4,1,3] => [[6,4,4],[3,3]] => [3,3] => 2
0001101 => [4,1,2,1] => [[5,5,4,4],[4,3,3]] => [4,3,3] => 3
0001110 => [4,1,1,2] => [[5,4,4,4],[3,3,3]] => [3,3,3] => 2
0010001 => [3,4,1] => [[6,6,3],[5,2]] => [5,2] => 3
0010010 => [3,3,2] => [[6,5,3],[4,2]] => [4,2] => 3
0010011 => [3,3,1,1] => [[5,5,5,3],[4,4,2]] => [4,4,2] => 3
0010100 => [3,2,3] => [[6,4,3],[3,2]] => [3,2] => 3
0010101 => [3,2,2,1] => [[5,5,4,3],[4,3,2]] => [4,3,2] => 4
0010110 => [3,2,1,2] => [[5,4,4,3],[3,3,2]] => [3,3,2] => 3
0010111 => [3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]] => [3,3,3,2] => 3
0011001 => [3,1,3,1] => [[5,5,3,3],[4,2,2]] => [4,2,2] => 3
0011010 => [3,1,2,2] => [[5,4,3,3],[3,2,2]] => [3,2,2] => 3
0011011 => [3,1,2,1,1] => [[4,4,4,3,3],[3,3,2,2]] => [3,3,2,2] => 3
0011100 => [3,1,1,3] => [[5,3,3,3],[2,2,2]] => [2,2,2] => 2
0011101 => [3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]] => [3,2,2,2] => 3
0011111 => [3,1,1,1,1,1] => [[3,3,3,3,3,3],[2,2,2,2,2]] => [2,2,2,2,2] => 2
0100010 => [2,4,2] => [[6,5,2],[4,1]] => [4,1] => 3
0100011 => [2,4,1,1] => [[5,5,5,2],[4,4,1]] => [4,4,1] => 3
0100100 => [2,3,3] => [[6,4,2],[3,1]] => [3,1] => 3
0100101 => [2,3,2,1] => [[5,5,4,2],[4,3,1]] => [4,3,1] => 4
0100110 => [2,3,1,2] => [[5,4,4,2],[3,3,1]] => [3,3,1] => 3
0100111 => [2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]] => [3,3,3,1] => 3
0101001 => [2,2,3,1] => [[5,5,3,2],[4,2,1]] => [4,2,1] => 4
0101010 => [2,2,2,2] => [[5,4,3,2],[3,2,1]] => [3,2,1] => 4
0101011 => [2,2,2,1,1] => [[4,4,4,3,2],[3,3,2,1]] => [3,3,2,1] => 4
0101100 => [2,2,1,3] => [[5,3,3,2],[2,2,1]] => [2,2,1] => 3
0101101 => [2,2,1,2,1] => [[4,4,3,3,2],[3,2,2,1]] => [3,2,2,1] => 4
0101110 => [2,2,1,1,2] => [[4,3,3,3,2],[2,2,2,1]] => [2,2,2,1] => 3
0101111 => [2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]] => [2,2,2,2,1] => 3
0110010 => [2,1,3,2] => [[5,4,2,2],[3,1,1]] => [3,1,1] => 3
0110011 => [2,1,3,1,1] => [[4,4,4,2,2],[3,3,1,1]] => [3,3,1,1] => 3
0110100 => [2,1,2,3] => [[5,3,2,2],[2,1,1]] => [2,1,1] => 3
0110101 => [2,1,2,2,1] => [[4,4,3,2,2],[3,2,1,1]] => [3,2,1,1] => 4
0110110 => [2,1,2,1,2] => [[4,3,3,2,2],[2,2,1,1]] => [2,2,1,1] => 3
0110111 => [2,1,2,1,1,1] => [[3,3,3,3,2,2],[2,2,2,1,1]] => [2,2,2,1,1] => 3
0111001 => [2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]] => [3,1,1,1] => 3
0111010 => [2,1,1,2,2] => [[4,3,2,2,2],[2,1,1,1]] => [2,1,1,1] => 3
0111011 => [2,1,1,2,1,1] => [[3,3,3,2,2,2],[2,2,1,1,1]] => [2,2,1,1,1] => 3
0111101 => [2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]] => [2,1,1,1,1] => 3
0111110 => [2,1,1,1,1,2] => [[3,2,2,2,2,2],[1,1,1,1,1]] => [1,1,1,1,1] => 2
0111111 => [2,1,1,1,1,1,1] => [[2,2,2,2,2,2,2],[1,1,1,1,1,1]] => [1,1,1,1,1,1] => 2
1000000 => [1,7] => [[7,1],[]] => [] => 1
1000100 => [1,4,3] => [[6,4,1],[3]] => [3] => 2
1000101 => [1,4,2,1] => [[5,5,4,1],[4,3]] => [4,3] => 3
1000110 => [1,4,1,2] => [[5,4,4,1],[3,3]] => [3,3] => 2
1000111 => [1,4,1,1,1] => [[4,4,4,4,1],[3,3,3]] => [3,3,3] => 2
1001001 => [1,3,3,1] => [[5,5,3,1],[4,2]] => [4,2] => 3
1001010 => [1,3,2,2] => [[5,4,3,1],[3,2]] => [3,2] => 3
1001011 => [1,3,2,1,1] => [[4,4,4,3,1],[3,3,2]] => [3,3,2] => 3
1001100 => [1,3,1,3] => [[5,3,3,1],[2,2]] => [2,2] => 2
1001101 => [1,3,1,2,1] => [[4,4,3,3,1],[3,2,2]] => [3,2,2] => 3
1001110 => [1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]] => [2,2,2] => 2
1010010 => [1,2,3,2] => [[5,4,2,1],[3,1]] => [3,1] => 3
1010011 => [1,2,3,1,1] => [[4,4,4,2,1],[3,3,1]] => [3,3,1] => 3
1010100 => [1,2,2,3] => [[5,3,2,1],[2,1]] => [2,1] => 3
1010101 => [1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]] => [3,2,1] => 4
1010110 => [1,2,2,1,2] => [[4,3,3,2,1],[2,2,1]] => [2,2,1] => 3
1010111 => [1,2,2,1,1,1] => [[3,3,3,3,2,1],[2,2,2,1]] => [2,2,2,1] => 3
1011001 => [1,2,1,3,1] => [[4,4,2,2,1],[3,1,1]] => [3,1,1] => 3
1011010 => [1,2,1,2,2] => [[4,3,2,2,1],[2,1,1]] => [2,1,1] => 3
1011011 => [1,2,1,2,1,1] => [[3,3,3,2,2,1],[2,2,1,1]] => [2,2,1,1] => 3
1011101 => [1,2,1,1,2,1] => [[3,3,2,2,2,1],[2,1,1,1]] => [2,1,1,1] => 3
1011110 => [1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]] => [1,1,1,1] => 2
1011111 => [1,2,1,1,1,1,1] => [[2,2,2,2,2,2,1],[1,1,1,1,1]] => [1,1,1,1,1] => 2
1100000 => [1,1,6] => [[6,1,1],[]] => [] => 1
1100100 => [1,1,3,3] => [[5,3,1,1],[2]] => [2] => 2
1100101 => [1,1,3,2,1] => [[4,4,3,1,1],[3,2]] => [3,2] => 3
1100110 => [1,1,3,1,2] => [[4,3,3,1,1],[2,2]] => [2,2] => 2
1101001 => [1,1,2,3,1] => [[4,4,2,1,1],[3,1]] => [3,1] => 3
1101010 => [1,1,2,2,2] => [[4,3,2,1,1],[2,1]] => [2,1] => 3
1101011 => [1,1,2,2,1,1] => [[3,3,3,2,1,1],[2,2,1]] => [2,2,1] => 3
1101101 => [1,1,2,1,2,1] => [[3,3,2,2,1,1],[2,1,1]] => [2,1,1] => 3
1101110 => [1,1,2,1,1,2] => [[3,2,2,2,1,1],[1,1,1]] => [1,1,1] => 2
1101111 => [1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]] => [1,1,1,1] => 2
1110000 => [1,1,1,5] => [[5,1,1,1],[]] => [] => 1
1110010 => [1,1,1,3,2] => [[4,3,1,1,1],[2]] => [2] => 2
1110101 => [1,1,1,2,2,1] => [[3,3,2,1,1,1],[2,1]] => [2,1] => 3
1110110 => [1,1,1,2,1,2] => [[3,2,2,1,1,1],[1,1]] => [1,1] => 2
1110111 => [1,1,1,2,1,1,1] => [[2,2,2,2,1,1,1],[1,1,1]] => [1,1,1] => 2
1111000 => [1,1,1,1,4] => [[4,1,1,1,1],[]] => [] => 1
1111010 => [1,1,1,1,2,2] => [[3,2,1,1,1,1],[1]] => [1] => 2
1111011 => [1,1,1,1,2,1,1] => [[2,2,2,1,1,1,1],[1,1]] => [1,1] => 2
1111100 => [1,1,1,1,1,3] => [[3,1,1,1,1,1],[]] => [] => 1
1111101 => [1,1,1,1,1,2,1] => [[2,2,1,1,1,1,1],[1]] => [1] => 2
1111110 => [1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1],[]] => [] => 1
1111111 => [1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1],[]] => [] => 1
00000000 => [9] => [[9],[]] => [] => 1
00000001 => [8,1] => [[8,8],[7]] => [7] => 2
01111111 => [2,1,1,1,1,1,1,1] => [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]] => [1,1,1,1,1,1,1] => 2
10000000 => [1,8] => [[8,1],[]] => [] => 1
11000000 => [1,1,7] => [[7,1,1],[]] => [] => 1
11100000 => [1,1,1,6] => [[6,1,1,1],[]] => [] => 1
11110000 => [1,1,1,1,5] => [[5,1,1,1,1],[]] => [] => 1
11111000 => [1,1,1,1,1,4] => [[4,1,1,1,1,1],[]] => [] => 1
11111100 => [1,1,1,1,1,1,3] => [[3,1,1,1,1,1,1],[]] => [] => 1
11111110 => [1,1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1,1],[]] => [] => 1
11111111 => [1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1],[]] => [] => 1
000000000 => [10] => [[10],[]] => [] => 1
000000001 => [9,1] => [[9,9],[8]] => [8] => 2
011111111 => [2,1,1,1,1,1,1,1,1] => [[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]] => [1,1,1,1,1,1,1,1] => 2
100000000 => [1,9] => [[9,1],[]] => [] => 1
110000000 => [1,1,8] => [[8,1,1],[]] => [] => 1
111000000 => [1,1,1,7] => [[7,1,1,1],[]] => [] => 1
111100000 => [1,1,1,1,6] => [[6,1,1,1,1],[]] => [] => 1
111110000 => [1,1,1,1,1,5] => [[5,1,1,1,1,1],[]] => [] => 1
111111000 => [1,1,1,1,1,1,4] => [[4,1,1,1,1,1,1],[]] => [] => 1
111111100 => [1,1,1,1,1,1,1,3] => [[3,1,1,1,1,1,1,1],[]] => [] => 1
111111110 => [1,1,1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1,1,1],[]] => [] => 1
111111111 => [1,1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1,1],[]] => [] => 1
=> [1] => [[1],[]] => [] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of addable cells of the Ferrers diagram of an integer partition.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Map
inner shape
Description
The inner shape of a skew partition.