Identifier
Values
[] => 1
[1] => 1
[2] => 1
[1,1] => 2
[3] => 1
[2,1] => 2
[1,1,1] => 3
[4] => 1
[3,1] => 2
[2,2] => 2
[2,1,1] => 4
[1,1,1,1] => 5
[5] => 1
[4,1] => 2
[3,2] => 2
[3,1,1] => 4
[2,2,1] => 4
[2,1,1,1] => 6
[1,1,1,1,1] => 7
[6] => 1
[5,1] => 2
[4,2] => 2
[4,1,1] => 4
[3,3] => 2
[3,2,1] => 5
[3,1,1,1] => 7
[2,2,2] => 3
[2,2,1,1] => 8
[2,1,1,1,1] => 10
[1,1,1,1,1,1] => 11
[7] => 1
[6,1] => 2
[5,2] => 2
[5,1,1] => 4
[4,3] => 2
[4,2,1] => 5
[4,1,1,1] => 7
[3,3,1] => 4
[3,2,2] => 4
[3,2,1,1] => 9
[3,1,1,1,1] => 11
[2,2,2,1] => 7
[2,2,1,1,1] => 12
[2,1,1,1,1,1] => 14
[1,1,1,1,1,1,1] => 15
[8] => 1
[7,1] => 2
[6,2] => 2
[6,1,1] => 4
[5,3] => 2
[5,2,1] => 5
[5,1,1,1] => 7
[4,4] => 2
[4,3,1] => 5
[4,2,2] => 4
[4,2,1,1] => 10
[4,1,1,1,1] => 12
[3,3,2] => 4
[3,3,1,1] => 9
[3,2,2,1] => 10
[3,2,1,1,1] => 15
[3,1,1,1,1,1] => 17
[2,2,2,2] => 5
[2,2,2,1,1] => 14
[2,2,1,1,1,1] => 19
[2,1,1,1,1,1,1] => 21
[1,1,1,1,1,1,1,1] => 22
[9] => 1
[8,1] => 2
[7,2] => 2
[7,1,1] => 4
[6,3] => 2
[6,2,1] => 5
[6,1,1,1] => 7
[5,4] => 2
[5,3,1] => 5
[5,2,2] => 4
[5,2,1,1] => 10
[5,1,1,1,1] => 12
[4,4,1] => 4
[4,3,2] => 5
[4,3,1,1] => 10
[4,2,2,1] => 10
[4,2,1,1,1] => 16
[4,1,1,1,1,1] => 18
[3,3,3] => 3
[3,3,2,1] => 10
[3,3,1,1,1] => 15
[3,2,2,2] => 7
[3,2,2,1,1] => 18
[3,2,1,1,1,1] => 23
[3,1,1,1,1,1,1] => 25
[2,2,2,2,1] => 12
[2,2,2,1,1,1] => 22
[2,2,1,1,1,1,1] => 27
[2,1,1,1,1,1,1,1] => 29
[1,1,1,1,1,1,1,1,1] => 30
[10] => 1
[9,1] => 2
[8,2] => 2
[8,1,1] => 4
>>> Load all 272 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of coarsenings of a partition.
A partition $\mu$ coarsens a partition $\lambda$ if the parts of $\mu$ can be subdivided to obtain the parts of $\lambda$.
A partition $\mu$ coarsens a partition $\lambda$ if the parts of $\mu$ can be subdivided to obtain the parts of $\lambda$.
References
[1] Birkhoff, G. Lattice theory MathSciNet:0598630
[2] Ziegler, Günter M. On the poset of partitions of an integer MathSciNet:0847552
[3] Perry, J. M. Counting refinements of partitions MathOverflow:226656
[4] The number of refinements of a partition. St000345
[2] Ziegler, Günter M. On the poset of partitions of an integer MathSciNet:0847552
[3] Perry, J. M. Counting refinements of partitions MathOverflow:226656
[4] The number of refinements of a partition. St000345
Code
@cached_function
def PartitionPoset(n):
return posets.IntegerPartitions(n)
def statistic(part):
P = PartitionPoset(sum(part))
return len(P.order_ideal([tuple(part)]))
Created
Dec 23, 2015 at 16:30 by Christian Stump
Updated
Oct 29, 2017 at 20:59 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!