Identifier
- St000346: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>1
[1,1]=>2
[3]=>1
[2,1]=>2
[1,1,1]=>3
[4]=>1
[3,1]=>2
[2,2]=>2
[2,1,1]=>4
[1,1,1,1]=>5
[5]=>1
[4,1]=>2
[3,2]=>2
[3,1,1]=>4
[2,2,1]=>4
[2,1,1,1]=>6
[1,1,1,1,1]=>7
[6]=>1
[5,1]=>2
[4,2]=>2
[4,1,1]=>4
[3,3]=>2
[3,2,1]=>5
[3,1,1,1]=>7
[2,2,2]=>3
[2,2,1,1]=>8
[2,1,1,1,1]=>10
[1,1,1,1,1,1]=>11
[7]=>1
[6,1]=>2
[5,2]=>2
[5,1,1]=>4
[4,3]=>2
[4,2,1]=>5
[4,1,1,1]=>7
[3,3,1]=>4
[3,2,2]=>4
[3,2,1,1]=>9
[3,1,1,1,1]=>11
[2,2,2,1]=>7
[2,2,1,1,1]=>12
[2,1,1,1,1,1]=>14
[1,1,1,1,1,1,1]=>15
[8]=>1
[7,1]=>2
[6,2]=>2
[6,1,1]=>4
[5,3]=>2
[5,2,1]=>5
[5,1,1,1]=>7
[4,4]=>2
[4,3,1]=>5
[4,2,2]=>4
[4,2,1,1]=>10
[4,1,1,1,1]=>12
[3,3,2]=>4
[3,3,1,1]=>9
[3,2,2,1]=>10
[3,2,1,1,1]=>15
[3,1,1,1,1,1]=>17
[2,2,2,2]=>5
[2,2,2,1,1]=>14
[2,2,1,1,1,1]=>19
[2,1,1,1,1,1,1]=>21
[1,1,1,1,1,1,1,1]=>22
[9]=>1
[8,1]=>2
[7,2]=>2
[7,1,1]=>4
[6,3]=>2
[6,2,1]=>5
[6,1,1,1]=>7
[5,4]=>2
[5,3,1]=>5
[5,2,2]=>4
[5,2,1,1]=>10
[5,1,1,1,1]=>12
[4,4,1]=>4
[4,3,2]=>5
[4,3,1,1]=>10
[4,2,2,1]=>10
[4,2,1,1,1]=>16
[4,1,1,1,1,1]=>18
[3,3,3]=>3
[3,3,2,1]=>10
[3,3,1,1,1]=>15
[3,2,2,2]=>7
[3,2,2,1,1]=>18
[3,2,1,1,1,1]=>23
[3,1,1,1,1,1,1]=>25
[2,2,2,2,1]=>12
[2,2,2,1,1,1]=>22
[2,2,1,1,1,1,1]=>27
[2,1,1,1,1,1,1,1]=>29
[1,1,1,1,1,1,1,1,1]=>30
[10]=>1
[9,1]=>2
[8,2]=>2
[8,1,1]=>4
[7,3]=>2
[7,2,1]=>5
[7,1,1,1]=>7
[6,4]=>2
[6,3,1]=>5
[6,2,2]=>4
[6,2,1,1]=>10
[6,1,1,1,1]=>12
[5,5]=>2
[5,4,1]=>5
[5,3,2]=>5
[5,3,1,1]=>11
[5,2,2,1]=>11
[5,2,1,1,1]=>17
[5,1,1,1,1,1]=>19
[4,4,2]=>4
[4,4,1,1]=>9
[4,3,3]=>4
[4,3,2,1]=>13
[4,3,1,1,1]=>18
[4,2,2,2]=>6
[4,2,2,1,1]=>20
[4,2,1,1,1,1]=>26
[4,1,1,1,1,1,1]=>28
[3,3,3,1]=>7
[3,3,2,2]=>9
[3,3,2,1,1]=>20
[3,3,1,1,1,1]=>25
[3,2,2,2,1]=>18
[3,2,2,1,1,1]=>29
[3,2,1,1,1,1,1]=>34
[3,1,1,1,1,1,1,1]=>36
[2,2,2,2,2]=>7
[2,2,2,2,1,1]=>24
[2,2,2,1,1,1,1]=>34
[2,2,1,1,1,1,1,1]=>39
[2,1,1,1,1,1,1,1,1]=>41
[1,1,1,1,1,1,1,1,1,1]=>42
[11]=>1
[10,1]=>2
[9,2]=>2
[9,1,1]=>4
[8,3]=>2
[8,2,1]=>5
[8,1,1,1]=>7
[7,4]=>2
[7,3,1]=>5
[7,2,2]=>4
[7,2,1,1]=>10
[7,1,1,1,1]=>12
[6,5]=>2
[6,4,1]=>5
[6,3,2]=>5
[6,3,1,1]=>11
[6,2,2,1]=>11
[6,2,1,1,1]=>17
[6,1,1,1,1,1]=>19
[5,5,1]=>4
[5,4,2]=>5
[5,4,1,1]=>10
[5,3,3]=>4
[5,3,2,1]=>13
[5,3,1,1,1]=>19
[5,2,2,2]=>7
[5,2,2,1,1]=>21
[5,2,1,1,1,1]=>27
[5,1,1,1,1,1,1]=>29
[4,4,3]=>4
[4,4,2,1]=>11
[4,4,1,1,1]=>16
[4,3,3,1]=>10
[4,3,2,2]=>10
[4,3,2,1,1]=>24
[4,3,1,1,1,1]=>29
[4,2,2,2,1]=>17
[4,2,2,1,1,1]=>32
[4,2,1,1,1,1,1]=>38
[4,1,1,1,1,1,1,1]=>40
[3,3,3,2]=>7
[3,3,3,1,1]=>16
[3,3,2,2,1]=>21
[3,3,2,1,1,1]=>32
[3,3,1,1,1,1,1]=>37
[3,2,2,2,2]=>12
[3,2,2,2,1,1]=>32
[3,2,2,1,1,1,1]=>43
[3,2,1,1,1,1,1,1]=>48
[3,1,1,1,1,1,1,1,1]=>50
[2,2,2,2,2,1]=>19
[2,2,2,2,1,1,1]=>38
[2,2,2,1,1,1,1,1]=>48
[2,2,1,1,1,1,1,1,1]=>53
[2,1,1,1,1,1,1,1,1,1]=>55
[1,1,1,1,1,1,1,1,1,1,1]=>56
[12]=>1
[11,1]=>2
[10,2]=>2
[10,1,1]=>4
[9,3]=>2
[9,2,1]=>5
[9,1,1,1]=>7
[8,4]=>2
[8,3,1]=>5
[8,2,2]=>4
[8,2,1,1]=>10
[8,1,1,1,1]=>12
[7,5]=>2
[7,4,1]=>5
[7,3,2]=>5
[7,3,1,1]=>11
[7,2,2,1]=>11
[7,2,1,1,1]=>17
[7,1,1,1,1,1]=>19
[6,6]=>2
[6,5,1]=>5
[6,4,2]=>5
[6,4,1,1]=>11
[6,3,3]=>4
[6,3,2,1]=>14
[6,3,1,1,1]=>20
[6,2,2,2]=>7
[6,2,2,1,1]=>22
[6,2,1,1,1,1]=>28
[6,1,1,1,1,1,1]=>30
[5,5,2]=>4
[5,5,1,1]=>9
[5,4,3]=>5
[5,4,2,1]=>14
[5,4,1,1,1]=>19
[5,3,3,1]=>11
[5,3,2,2]=>10
[5,3,2,1,1]=>26
[5,3,1,1,1,1]=>32
[5,2,2,2,1]=>20
[5,2,2,1,1,1]=>35
[5,2,1,1,1,1,1]=>41
[5,1,1,1,1,1,1,1]=>43
[4,4,4]=>3
[4,4,3,1]=>10
[4,4,2,2]=>8
[4,4,2,1,1]=>23
[4,4,1,1,1,1]=>28
[4,3,3,2]=>11
[4,3,3,1,1]=>22
[4,3,2,2,1]=>26
[4,3,2,1,1,1]=>40
[4,3,1,1,1,1,1]=>45
[4,2,2,2,2]=>10
[4,2,2,2,1,1]=>35
[4,2,2,1,1,1,1]=>50
[4,2,1,1,1,1,1,1]=>56
[4,1,1,1,1,1,1,1,1]=>58
[3,3,3,3]=>5
[3,3,3,2,1]=>19
[3,3,3,1,1,1]=>29
[3,3,2,2,2]=>16
[3,3,2,2,1,1]=>40
[3,3,2,1,1,1,1]=>51
[3,3,1,1,1,1,1,1]=>56
[3,2,2,2,2,1]=>31
[3,2,2,2,1,1,1]=>52
[3,2,2,1,1,1,1,1]=>63
[3,2,1,1,1,1,1,1,1]=>68
[3,1,1,1,1,1,1,1,1,1]=>70
[2,2,2,2,2,2]=>11
[2,2,2,2,2,1,1]=>39
[2,2,2,2,1,1,1,1]=>59
[2,2,2,1,1,1,1,1,1]=>69
[2,2,1,1,1,1,1,1,1,1]=>74
[2,1,1,1,1,1,1,1,1,1,1]=>76
[1,1,1,1,1,1,1,1,1,1,1,1]=>77
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of coarsenings of a partition.
A partition $\mu$ coarsens a partition $\lambda$ if the parts of $\mu$ can be subdivided to obtain the parts of $\lambda$.
A partition $\mu$ coarsens a partition $\lambda$ if the parts of $\mu$ can be subdivided to obtain the parts of $\lambda$.
References
[1] Birkhoff, G. Lattice theory MathSciNet:0598630
[2] Ziegler, Günter M. On the poset of partitions of an integer MathSciNet:0847552
[3] Perry, J. M. Counting refinements of partitions MathOverflow:226656
[4] The number of refinements of a partition. St000345
[2] Ziegler, Günter M. On the poset of partitions of an integer MathSciNet:0847552
[3] Perry, J. M. Counting refinements of partitions MathOverflow:226656
[4] The number of refinements of a partition. St000345
Code
@cached_function def PartitionPoset(n): return posets.IntegerPartitions(n) def statistic(part): P = PartitionPoset(sum(part)) return len(P.order_ideal([tuple(part)]))
Created
Dec 23, 2015 at 16:30 by Christian Stump
Updated
Oct 29, 2017 at 20:59 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!