Identifier
Values
[] => 0
[1] => 1
[2] => 2
[1,1] => 2
[3] => 3
[2,1] => 2
[1,1,1] => 3
[4] => 4
[3,1] => 3
[2,2] => 3
[2,1,1] => 3
[1,1,1,1] => 4
[5] => 5
[4,1] => 4
[3,2] => 3
[3,1,1] => 3
[2,2,1] => 3
[2,1,1,1] => 4
[1,1,1,1,1] => 5
[6] => 6
[5,1] => 5
[4,2] => 4
[4,1,1] => 4
[3,3] => 4
[3,2,1] => 3
[3,1,1,1] => 4
[2,2,2] => 4
[2,2,1,1] => 4
[2,1,1,1,1] => 5
[1,1,1,1,1,1] => 6
[7] => 7
[6,1] => 6
[5,2] => 5
[5,1,1] => 5
[4,3] => 4
[4,2,1] => 4
[4,1,1,1] => 4
[3,3,1] => 4
[3,2,2] => 4
[3,2,1,1] => 4
[3,1,1,1,1] => 5
[2,2,2,1] => 4
[2,2,1,1,1] => 5
[2,1,1,1,1,1] => 6
[1,1,1,1,1,1,1] => 7
[8] => 8
[7,1] => 7
[6,2] => 6
[6,1,1] => 6
[5,3] => 5
[5,2,1] => 5
[5,1,1,1] => 5
[4,4] => 5
[4,3,1] => 4
[4,2,2] => 4
[4,2,1,1] => 4
[4,1,1,1,1] => 5
[3,3,2] => 4
[3,3,1,1] => 4
[3,2,2,1] => 4
[3,2,1,1,1] => 5
[3,1,1,1,1,1] => 6
[2,2,2,2] => 5
[2,2,2,1,1] => 5
[2,2,1,1,1,1] => 6
[2,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,1,1] => 8
[9] => 9
[8,1] => 8
[7,2] => 7
[7,1,1] => 7
[6,3] => 6
[6,2,1] => 6
[6,1,1,1] => 6
[5,4] => 5
[5,3,1] => 5
[5,2,2] => 5
[5,2,1,1] => 5
[5,1,1,1,1] => 5
[4,4,1] => 5
[4,3,2] => 4
[4,3,1,1] => 4
[4,2,2,1] => 4
[4,2,1,1,1] => 5
[4,1,1,1,1,1] => 6
[3,3,3] => 5
[3,3,2,1] => 4
[3,3,1,1,1] => 5
[3,2,2,2] => 5
[3,2,2,1,1] => 5
[3,2,1,1,1,1] => 6
[3,1,1,1,1,1,1] => 7
[2,2,2,2,1] => 5
[2,2,2,1,1,1] => 6
[2,2,1,1,1,1,1] => 7
[2,1,1,1,1,1,1,1] => 8
[1,1,1,1,1,1,1,1,1] => 9
[10] => 10
[9,1] => 9
[8,2] => 8
[8,1,1] => 8
>>> Load all 288 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The maximal part of the shifted composition of an integer partition.
A partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ is shifted into a composition by adding $i-1$ to the $i$-th part.
The statistic is then $\operatorname{max}_i\{ \lambda_i + i - 1 \}$.
See also St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition..
A partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ is shifted into a composition by adding $i-1$ to the $i$-th part.
The statistic is then $\operatorname{max}_i\{ \lambda_i + i - 1 \}$.
See also St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition..
Code
def statistic(p):
if len(p) == 0:
return 0
return max( p[i]+i for i in range(len(p)) )
Created
Feb 09, 2016 at 12:23 by Christian Stump
Updated
May 24, 2018 at 13:24 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!