Identifier
-
Mp00097:
Binary words
—delta morphism⟶
Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St000387: Graphs ⟶ ℤ
Values
0 => [1] => ([],1) => ([],1) => 0
1 => [1] => ([],1) => ([],1) => 0
00 => [2] => ([],2) => ([],1) => 0
01 => [1,1] => ([(0,1)],2) => ([(0,1)],2) => 1
10 => [1,1] => ([(0,1)],2) => ([(0,1)],2) => 1
11 => [2] => ([],2) => ([],1) => 0
000 => [3] => ([],3) => ([],1) => 0
001 => [2,1] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 1
010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 1
011 => [1,2] => ([(1,2)],3) => ([(0,1)],2) => 1
100 => [1,2] => ([(1,2)],3) => ([(0,1)],2) => 1
101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 1
110 => [2,1] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 1
111 => [3] => ([],3) => ([],1) => 0
0000 => [4] => ([],4) => ([],1) => 0
0001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 1
0010 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 1
0011 => [2,2] => ([(1,3),(2,3)],4) => ([(0,1)],2) => 1
0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 1
0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
0110 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 1
0111 => [1,3] => ([(2,3)],4) => ([(0,1)],2) => 1
1000 => [1,3] => ([(2,3)],4) => ([(0,1)],2) => 1
1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 1
1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 1
1100 => [2,2] => ([(1,3),(2,3)],4) => ([(0,1)],2) => 1
1101 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 1
1110 => [3,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 1
1111 => [4] => ([],4) => ([],1) => 0
00000 => [5] => ([],5) => ([],1) => 0
00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 1
00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
00011 => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 1
00100 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
00110 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
00111 => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 1
01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
01001 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
01100 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
01101 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
01110 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
01111 => [1,4] => ([(3,4)],5) => ([(0,1)],2) => 1
10000 => [1,4] => ([(3,4)],5) => ([(0,1)],2) => 1
10001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
10010 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
10011 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
10110 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
11000 => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 1
11001 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
11010 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
11011 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
11100 => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 1
11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 1
11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 1
11111 => [5] => ([],5) => ([],1) => 0
000000 => [6] => ([],6) => ([],1) => 0
000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 1
000010 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
000011 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 1
000100 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
000110 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
000111 => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 1
001000 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
001001 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
001010 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
001011 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
001100 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
001110 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
001111 => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 1
010000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
010001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
010010 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
010011 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
010100 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
010110 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
010111 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
011000 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
011001 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
011010 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
011011 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
011100 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
011101 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
011110 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
011111 => [1,5] => ([(4,5)],6) => ([(0,1)],2) => 1
100000 => [1,5] => ([(4,5)],6) => ([(0,1)],2) => 1
100001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
100010 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
100011 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 1
100100 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
100101 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
100110 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
>>> Load all 126 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The matching number of a graph.
For a graph $G$, this is defined as the maximal size of a matching or independent edge set (a set of edges without common vertices) contained in $G$.
For a graph $G$, this is defined as the maximal size of a matching or independent edge set (a set of edges without common vertices) contained in $G$.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
delta morphism
Description
Applies the delta morphism to a binary word.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!