Identifier
-
Mp00184:
Integer compositions
—to threshold graph⟶
Graphs
St000403: Graphs ⟶ ℤ
Values
[1] => ([],1) => 0
[1,1] => ([(0,1)],2) => 0
[2] => ([],2) => 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3) => 0
[1,2] => ([(1,2)],3) => 0
[2,1] => ([(0,2),(1,2)],3) => 0
[3] => ([],3) => 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4) => 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 0
[1,3] => ([(2,3)],4) => 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[2,2] => ([(1,3),(2,3)],4) => 0
[3,1] => ([(0,3),(1,3),(2,3)],4) => 0
[4] => ([],4) => 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,1,3] => ([(2,3),(2,4),(3,4)],5) => 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 0
[1,4] => ([(3,4)],5) => 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3] => ([(2,4),(3,4)],5) => 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
[3,2] => ([(1,4),(2,4),(3,4)],5) => 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
[5] => ([],5) => 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[1,1,4] => ([(3,4),(3,5),(4,5)],6) => 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
[1,5] => ([(4,5)],6) => 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,4] => ([(3,5),(4,5)],6) => 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[3,3] => ([(2,5),(3,5),(4,5)],6) => 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 0
[6] => ([],6) => 0
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 12
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7) => 0
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 12
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 16
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 20
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 18
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 0
[1,6] => ([(5,6)],7) => 0
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 14
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
>>> Load all 126 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Szeged index minus the Wiener index of a graph.
It is known that the Szeged index is at least as much as the Wiener index. For $2$-connected graphs on $n$ vertices, the difference is at least $2n-6$.
For the two individual statistics see St000263The Szeged index of a graph. and St000265The Wiener index of a graph..
It is known that the Szeged index is at least as much as the Wiener index. For $2$-connected graphs on $n$ vertices, the difference is at least $2n-6$.
For the two individual statistics see St000263The Szeged index of a graph. and St000265The Wiener index of a graph..
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!