Identifier
Values
[1] => [1,0] => [1] => 0
[1,1] => [1,0,1,0] => [1,2] => 0
[2] => [1,1,0,0] => [2,1] => 0
[1,1,1] => [1,0,1,0,1,0] => [1,2,3] => 0
[1,2] => [1,0,1,1,0,0] => [1,3,2] => 0
[2,1] => [1,1,0,0,1,0] => [2,1,3] => 0
[3] => [1,1,1,0,0,0] => [3,2,1] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => 0
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,2,4,3] => 0
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,3,2,4] => 1
[1,3] => [1,0,1,1,1,0,0,0] => [1,4,3,2] => 0
[2,1,1] => [1,1,0,0,1,0,1,0] => [2,1,3,4] => 0
[2,2] => [1,1,0,0,1,1,0,0] => [2,1,4,3] => 0
[3,1] => [1,1,1,0,0,0,1,0] => [3,2,1,4] => 0
[4] => [1,1,1,1,0,0,0,0] => [4,3,2,1] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,2,3,5,4] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,2,5,4,3] => 0
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4] => 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,4,3,2,5] => 3
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,5,4,3,2] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [2,1,3,4,5] => 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [2,1,3,5,4] => 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,5] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [2,1,5,4,3] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [3,2,1,4,5] => 0
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [3,2,1,5,4] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [4,3,2,1,5] => 0
[5] => [1,1,1,1,1,0,0,0,0,0] => [5,4,3,2,1] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,6,5] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => 3
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,6,5,4] => 0
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => 4
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,2,4,3,6,5] => 4
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,4,3,6] => 6
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,6,5,4,3] => 0
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => 3
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,3,2,4,6,5] => 3
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,6] => 6
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,3,2,6,5,4] => 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,3,2,5,6] => 6
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,4,3,2,6,5] => 6
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,5,4,3,2,6] => 6
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,6,5,4,3,2] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,1,3,4,5,6] => 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [2,1,3,4,6,5] => 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [2,1,3,5,4,6] => 3
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [2,1,3,6,5,4] => 0
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [2,1,4,3,5,6] => 4
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [2,1,4,3,6,5] => 4
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [2,1,5,4,3,6] => 6
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,1,6,5,4,3] => 0
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [3,2,1,4,5,6] => 0
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [3,2,1,4,6,5] => 0
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [3,2,1,5,4,6] => 3
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [3,2,1,6,5,4] => 0
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [4,3,2,1,5,6] => 0
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [4,3,2,1,6,5] => 0
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [5,4,3,2,1,6] => 0
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,5,4,3,2,1] => 0
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6,7] => 0
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,5,7,6] => 0
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,4,6,5,7] => 4
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,4,7,6,5] => 0
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,3,5,4,6,7] => 6
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,2,3,5,4,7,6] => 6
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,3,6,5,4,7] => 9
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,3,7,6,5,4] => 0
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,2,4,3,5,6,7] => 6
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,2,4,3,5,7,6] => 6
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,2,4,3,6,5,7] => 10
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,2,4,3,7,6,5] => 6
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,2,5,4,3,6,7] => 12
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,2,5,4,3,7,6] => 12
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,2,6,5,4,3,7] => 12
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,2,7,6,5,4,3] => 0
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,3,2,4,5,6,7] => 4
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,3,2,4,5,7,6] => 4
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,3,2,4,6,5,7] => 8
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,3,2,4,7,6,5] => 4
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,3,2,5,4,6,7] => 10
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4,7,6] => 10
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,3,2,6,5,4,7] => 13
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,7,6,5,4] => 4
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,4,3,2,5,6,7] => 9
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,4,3,2,5,7,6] => 9
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,4,3,2,6,5,7] => 13
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,4,3,2,7,6,5] => 9
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,7,6,5,4,3,2] => 0
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [2,1,3,4,5,6,7] => 0
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [2,1,7,6,5,4,3] => 0
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [3,2,1,4,5,6,7] => 0
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [4,3,2,1,5,6,7] => 0
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [5,4,3,2,1,6,7] => 0
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [5,4,3,2,1,7,6] => 0
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [6,5,4,3,2,1,7] => 0
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [7,6,5,4,3,2,1] => 0
[1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6,7,8] => 0
>>> Load all 167 entries. <<<
[1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,5,6,8,7] => 0
[1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,4,5,7,6,8] => 5
[1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,2,3,5,4,6,7,8] => 9
[1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,2,3,5,4,7,6,8] => 14
[1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,2,4,3,6,5,7,8] => 16
[1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,3,2,4,5,6,7,8] => 5
[1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,3,2,4,5,7,6,8] => 10
[1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,5,4,6,7,8] => 14
[1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,7,6,8] => 19
[1,3,3,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [1,4,3,2,7,6,5,8] => 24
[1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,8,7,6,5,4,3,2] => 0
[2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,1,3,4,5,6,7,8] => 0
[2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0] => [2,1,3,4,5,6,8,7] => 0
[2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0] => [2,1,4,3,6,5,8,7] => 16
[2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0] => [2,1,4,3,8,7,6,5] => 8
[2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0] => [2,1,6,5,4,3,8,7] => 24
[2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0] => [2,1,8,7,6,5,4,3] => 0
[3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0] => [3,2,1,4,5,6,7,8] => 0
[3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0] => [3,2,1,4,5,8,7,6] => 0
[3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0] => [3,2,1,8,7,6,5,4] => 0
[4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0] => [4,3,2,1,5,6,7,8] => 0
[4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0] => [4,3,2,1,6,5,8,7] => 8
[4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0] => [4,3,2,1,8,7,6,5] => 0
[5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0] => [5,4,3,2,1,6,7,8] => 0
[5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0] => [5,4,3,2,1,8,7,6] => 0
[6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0] => [6,5,4,3,2,1,7,8] => 0
[6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0] => [6,5,4,3,2,1,8,7] => 0
[7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [7,6,5,4,3,2,1,8] => 0
[8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [8,7,6,5,4,3,2,1] => 0
[1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6,7,8,9] => 0
[1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,5,6,7,9,8] => 0
[1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,9,8,7,6,5,4,3,2] => 0
[2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,1,3,4,5,6,7,8,9] => 0
[3,1,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [3,2,1,4,5,6,7,8,9] => 0
[4,1,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0] => [4,3,2,1,5,6,7,8,9] => 0
[5,1,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0] => [5,4,3,2,1,6,7,8,9] => 0
[6,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0] => [6,5,4,3,2,1,7,8,9] => 0
[7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0] => [7,6,5,4,3,2,1,8,9] => 0
[8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0] => [8,7,6,5,4,3,2,1,9] => 0
[9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [9,8,7,6,5,4,3,2,1] => 0
[1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6,7,8,9,10] => 0
[1,1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,5,6,7,8,10,9] => 0
[1,9] => [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,10,9,8,7,6,5,4,3,2] => 0
[2,1,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,1,3,4,5,6,7,8,9,10] => 0
[2,2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0] => [2,1,4,3,6,5,8,7,10,9] => 40
[2,2,2,4] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0] => [2,1,4,3,6,5,10,9,8,7] => 28
[2,4,4] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0] => [2,1,6,5,4,3,10,9,8,7] => 48
[2,6,2] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0] => [2,1,8,7,6,5,4,3,10,9] => 60
[2,8] => [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [2,1,10,9,8,7,6,5,4,3] => 0
[3,1,1,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [3,2,1,4,5,6,7,8,9,10] => 0
[4,1,1,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [4,3,2,1,5,6,7,8,9,10] => 0
[4,2,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0] => [4,3,2,1,6,5,8,7,10,9] => 28
[4,2,4] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,0,0] => [4,3,2,1,6,5,10,9,8,7] => 16
[4,4,2] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0] => [4,3,2,1,8,7,6,5,10,9] => 48
[4,6] => [1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0] => [4,3,2,1,10,9,8,7,6,5] => 0
[5,1,1,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0] => [5,4,3,2,1,6,7,8,9,10] => 0
[6,1,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1,7,8,9,10] => 0
[6,4] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0] => [6,5,4,3,2,1,10,9,8,7] => 0
[7,1,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,1,0] => [7,6,5,4,3,2,1,8,9,10] => 0
[8,1,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0] => [8,7,6,5,4,3,2,1,9,10] => 0
[8,2] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0] => [8,7,6,5,4,3,2,1,10,9] => 0
[9,1] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0] => [9,8,7,6,5,4,3,2,1,10] => 0
[10] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [10,9,8,7,6,5,4,3,2,1] => 0
[1,10] => [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [1,11,10,9,8,7,6,5,4,3,2] => 0
[10,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0] => [10,9,8,7,6,5,4,3,2,1,11] => 0
[1,1,1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,5,6,7,8,9,11,10] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of occurrences of the pattern 1324 in a permutation.
There is no explicit formula known for the number of permutations avoiding this pattern (denoted by $S_n(1324)$), but it is shown in [1], improving bounds in [2] and [3] that
$$\lim_{n \rightarrow \infty} \sqrt[n]{S_n(1324)} \leq 13.73718.$$
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to non-crossing permutation
Description
Sends a Dyck path $D$ with valley at positions $\{(i_1,j_1),\ldots,(i_k,j_k)\}$ to the unique non-crossing permutation $\pi$ having descents $\{i_1,\ldots,i_k\}$ and whose inverse has descents $\{j_1,\ldots,j_k\}$.
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..