Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000408: Permutations ⟶ ℤ
Values
[1] => [1,0] => [1,1,0,0] => [2,3,1] => 0
[1,1] => [1,0,1,0] => [1,1,0,1,0,0] => [4,3,1,2] => 0
[2] => [1,1,0,0] => [1,1,1,0,0,0] => [2,3,4,1] => 0
[1,1,1] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [5,4,1,2,3] => 0
[1,2] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [4,3,1,5,2] => 0
[2,1] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [2,5,4,1,3] => 0
[3] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => 0
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [5,4,1,2,6,3] => 0
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [6,3,1,5,2,4] => 1
[1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [4,3,1,5,6,2] => 0
[2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [2,6,5,1,3,4] => 0
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [2,5,4,1,6,3] => 0
[3,1] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => 0
[4] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [7,6,1,2,3,4,5] => 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [5,6,1,2,3,7,4] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [2,6,7,1,3,4,5] => 0
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,7,1,2,3,4,5,6] => 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [2,6,7,1,3,4,8,5] => 0
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,1] => 0
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,9,1,2,3,4,5,6,7] => 0
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,1] => 0
[1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [10,9,1,2,3,4,5,6,7,8] => 0
[8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,1] => 0
[9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,11,1] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of occurrences of the pattern 4231 in a permutation.
It is a necessary condition that a permutation $\pi$ avoids this pattern for the Schubert variety associated to $\pi$ to be smooth [2].
It is a necessary condition that a permutation $\pi$ avoids this pattern for the Schubert variety associated to $\pi$ to be smooth [2].
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!