Identifier
Values
0 => [2] => ([],2) => 0
1 => [1,1] => ([(0,1)],2) => 0
00 => [3] => ([],3) => 0
01 => [2,1] => ([(0,2),(1,2)],3) => 0
10 => [1,2] => ([(1,2)],3) => 0
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 0
000 => [4] => ([],4) => 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 0
010 => [2,2] => ([(1,3),(2,3)],4) => 0
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
100 => [1,3] => ([(2,3)],4) => 0
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 0
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 0
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
0000 => [5] => ([],5) => 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 0
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
0100 => [2,3] => ([(2,4),(3,4)],5) => 0
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
1000 => [1,4] => ([(3,4)],5) => 0
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 0
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 0
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 0
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
00000 => [6] => ([],6) => 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 0
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 0
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 0
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
01000 => [2,4] => ([(3,5),(4,5)],6) => 0
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
10000 => [1,5] => ([(4,5)],6) => 0
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 0
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 0
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 0
000011 => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
000101 => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
001001 => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
001011 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
001101 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
010001 => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
010011 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
010101 => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
010111 => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
011001 => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
011011 => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
011101 => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
100001 => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 0
100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
100101 => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
101001 => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
101011 => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
101101 => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
110001 => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
110101 => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
110111 => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
111001 => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
111011 => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
111101 => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
111110 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
0000001 => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 0
0000011 => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
0000101 => [5,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
0001001 => [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
0010001 => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
0100001 => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
>>> Load all 109 entries. <<<
0110001 => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
1000001 => [1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => 0
1000101 => [1,4,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
1001001 => [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
1010001 => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
1100001 => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
1110001 => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 0
=> [1] => ([],1) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of pairs of vertices of a graph with distance 3.
This is the coefficient of the cubic term of the Wiener polynomial, also called Wiener polarity index.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.