Identifier
-
Mp00267:
Signed permutations
—signs⟶
Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000453: Graphs ⟶ ℤ
Values
[1] => 0 => [2] => ([],2) => 1
[-1] => 1 => [1,1] => ([(0,1)],2) => 2
[1,2] => 00 => [3] => ([],3) => 1
[1,-2] => 01 => [2,1] => ([(0,2),(1,2)],3) => 3
[-1,2] => 10 => [1,2] => ([(1,2)],3) => 2
[-1,-2] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
[2,1] => 00 => [3] => ([],3) => 1
[2,-1] => 01 => [2,1] => ([(0,2),(1,2)],3) => 3
[-2,1] => 10 => [1,2] => ([(1,2)],3) => 2
[-2,-1] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
[1,2,3] => 000 => [4] => ([],4) => 1
[1,2,-3] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,-2,3] => 010 => [2,2] => ([(1,3),(2,3)],4) => 3
[1,-2,-3] => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[-1,2,3] => 100 => [1,3] => ([(2,3)],4) => 2
[-1,2,-3] => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
[-1,-2,3] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
[-1,-2,-3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,3,2] => 000 => [4] => ([],4) => 1
[1,3,-2] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,-3,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 3
[1,-3,-2] => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[-1,3,2] => 100 => [1,3] => ([(2,3)],4) => 2
[-1,3,-2] => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
[-1,-3,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
[-1,-3,-2] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[2,1,3] => 000 => [4] => ([],4) => 1
[2,1,-3] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,-1,3] => 010 => [2,2] => ([(1,3),(2,3)],4) => 3
[2,-1,-3] => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[-2,1,3] => 100 => [1,3] => ([(2,3)],4) => 2
[-2,1,-3] => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
[-2,-1,3] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
[-2,-1,-3] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[2,3,1] => 000 => [4] => ([],4) => 1
[2,3,-1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,-3,1] => 010 => [2,2] => ([(1,3),(2,3)],4) => 3
[2,-3,-1] => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[-2,3,1] => 100 => [1,3] => ([(2,3)],4) => 2
[-2,3,-1] => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
[-2,-3,1] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
[-2,-3,-1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[3,1,2] => 000 => [4] => ([],4) => 1
[3,1,-2] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[3,-1,2] => 010 => [2,2] => ([(1,3),(2,3)],4) => 3
[3,-1,-2] => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[-3,1,2] => 100 => [1,3] => ([(2,3)],4) => 2
[-3,1,-2] => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
[-3,-1,2] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
[-3,-1,-2] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[3,2,1] => 000 => [4] => ([],4) => 1
[3,2,-1] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[3,-2,1] => 010 => [2,2] => ([(1,3),(2,3)],4) => 3
[3,-2,-1] => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[-3,2,1] => 100 => [1,3] => ([(2,3)],4) => 2
[-3,2,-1] => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
[-3,-2,1] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
[-3,-2,-1] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,2,3,4] => 0000 => [5] => ([],5) => 1
[1,2,3,-4] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[1,2,-3,4] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,2,-3,-4] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-2,3,4] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[1,-2,3,-4] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,-2,-3,4] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-2,-3,-4] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-1,2,3,4] => 1000 => [1,4] => ([(3,4)],5) => 2
[-1,2,3,-4] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,2,-3,4] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,2,-3,-4] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-2,3,4] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-1,-2,3,-4] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-2,-3,4] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-1,-2,-3,-4] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,4,3] => 0000 => [5] => ([],5) => 1
[1,2,4,-3] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[1,2,-4,3] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,2,-4,-3] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-2,4,3] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[1,-2,4,-3] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,-2,-4,3] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-2,-4,-3] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-1,2,4,3] => 1000 => [1,4] => ([(3,4)],5) => 2
[-1,2,4,-3] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,2,-4,3] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,2,-4,-3] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-2,4,3] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-1,-2,4,-3] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-2,-4,3] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-1,-2,-4,-3] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,3,2,4] => 0000 => [5] => ([],5) => 1
[1,3,2,-4] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[1,3,-2,4] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,3,-2,-4] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-3,2,4] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[1,-3,2,-4] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,-3,-2,4] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-3,-2,-4] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-1,3,2,4] => 1000 => [1,4] => ([(3,4)],5) => 2
[-1,3,2,-4] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,3,-2,4] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
>>> Load all 5420 entries. <<<[-1,3,-2,-4] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-3,2,4] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-1,-3,2,-4] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-3,-2,4] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-1,-3,-2,-4] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,3,4,2] => 0000 => [5] => ([],5) => 1
[1,3,4,-2] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[1,3,-4,2] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,3,-4,-2] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-3,4,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[1,-3,4,-2] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,-3,-4,2] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-3,-4,-2] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-1,3,4,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[-1,3,4,-2] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,3,-4,2] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,3,-4,-2] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-3,4,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-1,-3,4,-2] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-3,-4,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-1,-3,-4,-2] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,4,2,3] => 0000 => [5] => ([],5) => 1
[1,4,2,-3] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[1,4,-2,3] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,4,-2,-3] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-4,2,3] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[1,-4,2,-3] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,-4,-2,3] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-4,-2,-3] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-1,4,2,3] => 1000 => [1,4] => ([(3,4)],5) => 2
[-1,4,2,-3] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,4,-2,3] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,4,-2,-3] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-4,2,3] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-1,-4,2,-3] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-4,-2,3] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-1,-4,-2,-3] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,4,3,2] => 0000 => [5] => ([],5) => 1
[1,4,3,-2] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[1,4,-3,2] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,4,-3,-2] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-4,3,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[1,-4,3,-2] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,-4,-3,2] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,-4,-3,-2] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-1,4,3,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[-1,4,3,-2] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,4,-3,2] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,4,-3,-2] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-4,3,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-1,-4,3,-2] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-1,-4,-3,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-1,-4,-3,-2] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,3,4] => 0000 => [5] => ([],5) => 1
[2,1,3,-4] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[2,1,-3,4] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,1,-3,-4] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-1,3,4] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[2,-1,3,-4] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[2,-1,-3,4] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-1,-3,-4] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-2,1,3,4] => 1000 => [1,4] => ([(3,4)],5) => 2
[-2,1,3,-4] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,1,-3,4] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,1,-3,-4] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-1,3,4] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-2,-1,3,-4] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-1,-3,4] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-2,-1,-3,-4] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,4,3] => 0000 => [5] => ([],5) => 1
[2,1,4,-3] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[2,1,-4,3] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,1,-4,-3] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-1,4,3] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[2,-1,4,-3] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[2,-1,-4,3] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-1,-4,-3] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-2,1,4,3] => 1000 => [1,4] => ([(3,4)],5) => 2
[-2,1,4,-3] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,1,-4,3] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,1,-4,-3] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-1,4,3] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-2,-1,4,-3] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-1,-4,3] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-2,-1,-4,-3] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3,1,4] => 0000 => [5] => ([],5) => 1
[2,3,1,-4] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[2,3,-1,4] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,3,-1,-4] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-3,1,4] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[2,-3,1,-4] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[2,-3,-1,4] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-3,-1,-4] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-2,3,1,4] => 1000 => [1,4] => ([(3,4)],5) => 2
[-2,3,1,-4] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,3,-1,4] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,3,-1,-4] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-3,1,4] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-2,-3,1,-4] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-3,-1,4] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-2,-3,-1,-4] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3,4,1] => 0000 => [5] => ([],5) => 1
[2,3,4,-1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[2,3,-4,1] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,3,-4,-1] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-3,4,1] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[2,-3,4,-1] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[2,-3,-4,1] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-3,-4,-1] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-2,3,4,1] => 1000 => [1,4] => ([(3,4)],5) => 2
[-2,3,4,-1] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,3,-4,1] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,3,-4,-1] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-3,4,1] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-2,-3,4,-1] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-3,-4,1] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-2,-3,-4,-1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,4,1,3] => 0000 => [5] => ([],5) => 1
[2,4,1,-3] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[2,4,-1,3] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,4,-1,-3] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-4,1,3] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[2,-4,1,-3] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[2,-4,-1,3] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-4,-1,-3] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-2,4,1,3] => 1000 => [1,4] => ([(3,4)],5) => 2
[-2,4,1,-3] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,4,-1,3] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,4,-1,-3] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-4,1,3] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-2,-4,1,-3] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-4,-1,3] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-2,-4,-1,-3] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,4,3,1] => 0000 => [5] => ([],5) => 1
[2,4,3,-1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[2,4,-3,1] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,4,-3,-1] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-4,3,1] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[2,-4,3,-1] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[2,-4,-3,1] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,-4,-3,-1] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-2,4,3,1] => 1000 => [1,4] => ([(3,4)],5) => 2
[-2,4,3,-1] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,4,-3,1] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,4,-3,-1] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-4,3,1] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-2,-4,3,-1] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-2,-4,-3,1] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-2,-4,-3,-1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,2,4] => 0000 => [5] => ([],5) => 1
[3,1,2,-4] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[3,1,-2,4] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,1,-2,-4] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-1,2,4] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[3,-1,2,-4] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[3,-1,-2,4] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-1,-2,-4] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-3,1,2,4] => 1000 => [1,4] => ([(3,4)],5) => 2
[-3,1,2,-4] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,1,-2,4] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,1,-2,-4] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-1,2,4] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-3,-1,2,-4] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-1,-2,4] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-3,-1,-2,-4] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,4,2] => 0000 => [5] => ([],5) => 1
[3,1,4,-2] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[3,1,-4,2] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,1,-4,-2] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-1,4,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[3,-1,4,-2] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[3,-1,-4,2] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-1,-4,-2] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-3,1,4,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[-3,1,4,-2] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,1,-4,2] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,1,-4,-2] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-1,4,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-3,-1,4,-2] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-1,-4,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-3,-1,-4,-2] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,2,1,4] => 0000 => [5] => ([],5) => 1
[3,2,1,-4] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[3,2,-1,4] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,2,-1,-4] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-2,1,4] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[3,-2,1,-4] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[3,-2,-1,4] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-2,-1,-4] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-3,2,1,4] => 1000 => [1,4] => ([(3,4)],5) => 2
[-3,2,1,-4] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,2,-1,4] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,2,-1,-4] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-2,1,4] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-3,-2,1,-4] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-2,-1,4] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-3,-2,-1,-4] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,2,4,1] => 0000 => [5] => ([],5) => 1
[3,2,4,-1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[3,2,-4,1] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,2,-4,-1] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-2,4,1] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[3,-2,4,-1] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[3,-2,-4,1] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-2,-4,-1] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-3,2,4,1] => 1000 => [1,4] => ([(3,4)],5) => 2
[-3,2,4,-1] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,2,-4,1] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,2,-4,-1] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-2,4,1] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-3,-2,4,-1] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-2,-4,1] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-3,-2,-4,-1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,4,1,2] => 0000 => [5] => ([],5) => 1
[3,4,1,-2] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[3,4,-1,2] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,4,-1,-2] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-4,1,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[3,-4,1,-2] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[3,-4,-1,2] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-4,-1,-2] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-3,4,1,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[-3,4,1,-2] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,4,-1,2] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,4,-1,-2] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-4,1,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-3,-4,1,-2] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-4,-1,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-3,-4,-1,-2] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,4,2,1] => 0000 => [5] => ([],5) => 1
[3,4,2,-1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[3,4,-2,1] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,4,-2,-1] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-4,2,1] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[3,-4,2,-1] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[3,-4,-2,1] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,-4,-2,-1] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-3,4,2,1] => 1000 => [1,4] => ([(3,4)],5) => 2
[-3,4,2,-1] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,4,-2,1] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,4,-2,-1] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-4,2,1] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-3,-4,2,-1] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-3,-4,-2,1] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-3,-4,-2,-1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,1,2,3] => 0000 => [5] => ([],5) => 1
[4,1,2,-3] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[4,1,-2,3] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[4,1,-2,-3] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-1,2,3] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[4,-1,2,-3] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,-1,-2,3] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-1,-2,-3] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-4,1,2,3] => 1000 => [1,4] => ([(3,4)],5) => 2
[-4,1,2,-3] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,1,-2,3] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,1,-2,-3] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-1,2,3] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-4,-1,2,-3] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-1,-2,3] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-4,-1,-2,-3] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,1,3,2] => 0000 => [5] => ([],5) => 1
[4,1,3,-2] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[4,1,-3,2] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[4,1,-3,-2] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-1,3,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[4,-1,3,-2] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,-1,-3,2] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-1,-3,-2] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-4,1,3,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[-4,1,3,-2] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,1,-3,2] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,1,-3,-2] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-1,3,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-4,-1,3,-2] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-1,-3,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-4,-1,-3,-2] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,2,1,3] => 0000 => [5] => ([],5) => 1
[4,2,1,-3] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[4,2,-1,3] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[4,2,-1,-3] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-2,1,3] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[4,-2,1,-3] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,-2,-1,3] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-2,-1,-3] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-4,2,1,3] => 1000 => [1,4] => ([(3,4)],5) => 2
[-4,2,1,-3] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,2,-1,3] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,2,-1,-3] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-2,1,3] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-4,-2,1,-3] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-2,-1,3] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-4,-2,-1,-3] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,2,3,1] => 0000 => [5] => ([],5) => 1
[4,2,3,-1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[4,2,-3,1] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[4,2,-3,-1] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-2,3,1] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[4,-2,3,-1] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,-2,-3,1] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-2,-3,-1] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-4,2,3,1] => 1000 => [1,4] => ([(3,4)],5) => 2
[-4,2,3,-1] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,2,-3,1] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,2,-3,-1] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-2,3,1] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-4,-2,3,-1] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-2,-3,1] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-4,-2,-3,-1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,3,1,2] => 0000 => [5] => ([],5) => 1
[4,3,1,-2] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[4,3,-1,2] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[4,3,-1,-2] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-3,1,2] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[4,-3,1,-2] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,-3,-1,2] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-3,-1,-2] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-4,3,1,2] => 1000 => [1,4] => ([(3,4)],5) => 2
[-4,3,1,-2] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,3,-1,2] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,3,-1,-2] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-3,1,2] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-4,-3,1,-2] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-3,-1,2] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-4,-3,-1,-2] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,3,2,1] => 0000 => [5] => ([],5) => 1
[4,3,2,-1] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[4,3,-2,1] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[4,3,-2,-1] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-3,2,1] => 0100 => [2,3] => ([(2,4),(3,4)],5) => 3
[4,-3,2,-1] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,-3,-2,1] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,-3,-2,-1] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[-4,3,2,1] => 1000 => [1,4] => ([(3,4)],5) => 2
[-4,3,2,-1] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,3,-2,1] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,3,-2,-1] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-3,2,1] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[-4,-3,2,-1] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-4,-3,-2,1] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-4,-3,-2,-1] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,3,4,5] => 00000 => [6] => ([],6) => 1
[1,2,3,4,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,3,-4,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,3,-4,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-3,4,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,2,-3,4,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,2,-3,-4,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-3,-4,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,3,4,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-2,3,4,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,3,-4,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,3,-4,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-3,4,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-3,4,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-3,-4,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-3,-4,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,2,3,4,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,2,3,4,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,3,-4,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,3,-4,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-3,4,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-3,4,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,2,-3,-4,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-3,-4,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,3,4,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-2,3,4,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,3,-4,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,3,-4,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-3,4,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-3,4,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-3,-4,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-3,-4,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,3,5,4] => 00000 => [6] => ([],6) => 1
[1,2,3,5,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,3,-5,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,3,-5,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-3,5,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,2,-3,5,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,2,-3,-5,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-3,-5,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,3,5,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-2,3,5,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,3,-5,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,3,-5,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-3,5,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-3,5,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-3,-5,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-3,-5,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,2,3,5,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,2,3,5,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,3,-5,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,3,-5,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-3,5,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-3,5,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,2,-3,-5,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-3,-5,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,3,5,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-2,3,5,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,3,-5,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,3,-5,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-3,5,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-3,5,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-3,-5,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-3,-5,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,4,3,5] => 00000 => [6] => ([],6) => 1
[1,2,4,3,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,4,-3,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,4,-3,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-4,3,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,2,-4,3,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,2,-4,-3,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-4,-3,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,4,3,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-2,4,3,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,4,-3,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,4,-3,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-4,3,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-4,3,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-4,-3,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-4,-3,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,2,4,3,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,2,4,3,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,4,-3,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,4,-3,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-4,3,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-4,3,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,2,-4,-3,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-4,-3,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,4,3,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-2,4,3,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,4,-3,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,4,-3,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-4,3,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-4,3,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-4,-3,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-4,-3,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,4,5,3] => 00000 => [6] => ([],6) => 1
[1,2,4,5,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,4,-5,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,4,-5,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-4,5,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,2,-4,5,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,2,-4,-5,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-4,-5,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,4,5,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-2,4,5,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,4,-5,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,4,-5,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-4,5,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-4,5,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-4,-5,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-4,-5,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,2,4,5,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,2,4,5,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,4,-5,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,4,-5,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-4,5,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-4,5,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,2,-4,-5,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-4,-5,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,4,5,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-2,4,5,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,4,-5,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,4,-5,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-4,5,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-4,5,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-4,-5,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-4,-5,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,5,3,4] => 00000 => [6] => ([],6) => 1
[1,2,5,3,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,5,-3,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,5,-3,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-5,3,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,2,-5,3,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,2,-5,-3,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-5,-3,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,5,3,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-2,5,3,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,5,-3,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,5,-3,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-5,3,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-5,3,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-5,-3,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-5,-3,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,2,5,3,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,2,5,3,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,5,-3,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,5,-3,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-5,3,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-5,3,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,2,-5,-3,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-5,-3,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,5,3,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-2,5,3,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,5,-3,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,5,-3,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-5,3,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-5,3,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-5,-3,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-5,-3,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,5,4,3] => 00000 => [6] => ([],6) => 1
[1,2,5,4,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,5,-4,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,2,5,-4,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-5,4,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,2,-5,4,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,2,-5,-4,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,-5,-4,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,5,4,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-2,5,4,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,5,-4,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,5,-4,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-5,4,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-5,4,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-2,-5,-4,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-2,-5,-4,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,2,5,4,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,2,5,4,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,5,-4,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,5,-4,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-5,4,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-5,4,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,2,-5,-4,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,2,-5,-4,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,5,4,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-2,5,4,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,5,-4,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,5,-4,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-5,4,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-5,4,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-2,-5,-4,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-2,-5,-4,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,2,4,5] => 00000 => [6] => ([],6) => 1
[1,3,2,4,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,2,-4,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,2,-4,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-2,4,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,3,-2,4,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,3,-2,-4,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-2,-4,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,2,4,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-3,2,4,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,2,-4,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,2,-4,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-2,4,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-2,4,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-2,-4,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-2,-4,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,3,2,4,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,3,2,4,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,2,-4,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,2,-4,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-2,4,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-2,4,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,3,-2,-4,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-2,-4,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,2,4,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-3,2,4,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,2,-4,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,2,-4,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-2,4,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-2,4,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-2,-4,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-2,-4,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,2,5,4] => 00000 => [6] => ([],6) => 1
[1,3,2,5,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,2,-5,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,2,-5,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-2,5,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,3,-2,5,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,3,-2,-5,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-2,-5,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,2,5,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-3,2,5,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,2,-5,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,2,-5,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-2,5,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-2,5,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-2,-5,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-2,-5,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,3,2,5,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,3,2,5,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,2,-5,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,2,-5,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-2,5,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-2,5,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,3,-2,-5,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-2,-5,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,2,5,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-3,2,5,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,2,-5,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,2,-5,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-2,5,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-2,5,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-2,-5,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-2,-5,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,4,2,5] => 00000 => [6] => ([],6) => 1
[1,3,4,2,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,4,-2,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,4,-2,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-4,2,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,3,-4,2,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,3,-4,-2,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-4,-2,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,4,2,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-3,4,2,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,4,-2,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,4,-2,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-4,2,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-4,2,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-4,-2,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-4,-2,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,3,4,2,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,3,4,2,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,4,-2,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,4,-2,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-4,2,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-4,2,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,3,-4,-2,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-4,-2,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,4,2,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-3,4,2,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,4,-2,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,4,-2,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-4,2,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-4,2,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-4,-2,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-4,-2,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,4,5,2] => 00000 => [6] => ([],6) => 1
[1,3,4,5,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,4,-5,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,4,-5,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-4,5,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,3,-4,5,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,3,-4,-5,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-4,-5,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,4,5,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-3,4,5,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,4,-5,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,4,-5,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-4,5,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-4,5,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-4,-5,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-4,-5,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,3,4,5,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,3,4,5,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,4,-5,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,4,-5,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-4,5,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-4,5,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,3,-4,-5,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-4,-5,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,4,5,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-3,4,5,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,4,-5,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,4,-5,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-4,5,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-4,5,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-4,-5,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-4,-5,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,5,2,4] => 00000 => [6] => ([],6) => 1
[1,3,5,2,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,5,-2,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,5,-2,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-5,2,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,3,-5,2,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,3,-5,-2,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-5,-2,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,5,2,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-3,5,2,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,5,-2,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,5,-2,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-5,2,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-5,2,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-5,-2,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-5,-2,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,3,5,2,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,3,5,2,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,5,-2,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,5,-2,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-5,2,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-5,2,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,3,-5,-2,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-5,-2,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,5,2,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-3,5,2,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,5,-2,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,5,-2,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-5,2,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-5,2,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-5,-2,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-5,-2,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,5,4,2] => 00000 => [6] => ([],6) => 1
[1,3,5,4,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,5,-4,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,3,5,-4,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-5,4,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,3,-5,4,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,3,-5,-4,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,-5,-4,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,5,4,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-3,5,4,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,5,-4,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,5,-4,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-5,4,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-5,4,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-3,-5,-4,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-3,-5,-4,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,3,5,4,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,3,5,4,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,5,-4,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,5,-4,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-5,4,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-5,4,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,3,-5,-4,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,3,-5,-4,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,5,4,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-3,5,4,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,5,-4,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,5,-4,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-5,4,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-5,4,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-3,-5,-4,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-3,-5,-4,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,2,3,5] => 00000 => [6] => ([],6) => 1
[1,4,2,3,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,2,-3,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,2,-3,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-2,3,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,4,-2,3,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,4,-2,-3,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-2,-3,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,2,3,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-4,2,3,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,2,-3,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,2,-3,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-2,3,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-2,3,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-2,-3,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-2,-3,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,4,2,3,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,4,2,3,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,2,-3,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,2,-3,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-2,3,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-2,3,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,4,-2,-3,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-2,-3,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,2,3,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-4,2,3,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,2,-3,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,2,-3,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-2,3,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-2,3,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-2,-3,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-2,-3,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,2,5,3] => 00000 => [6] => ([],6) => 1
[1,4,2,5,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,2,-5,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,2,-5,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-2,5,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,4,-2,5,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,4,-2,-5,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-2,-5,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,2,5,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-4,2,5,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,2,-5,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,2,-5,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-2,5,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-2,5,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-2,-5,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-2,-5,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,4,2,5,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,4,2,5,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,2,-5,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,2,-5,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-2,5,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-2,5,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,4,-2,-5,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-2,-5,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,2,5,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-4,2,5,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,2,-5,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,2,-5,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-2,5,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-2,5,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-2,-5,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-2,-5,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,3,2,5] => 00000 => [6] => ([],6) => 1
[1,4,3,2,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,3,-2,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,3,-2,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-3,2,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,4,-3,2,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,4,-3,-2,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-3,-2,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,3,2,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-4,3,2,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,3,-2,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,3,-2,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-3,2,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-3,2,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-3,-2,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-3,-2,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,4,3,2,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,4,3,2,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,3,-2,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,3,-2,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-3,2,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-3,2,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,4,-3,-2,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-3,-2,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,3,2,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-4,3,2,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,3,-2,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,3,-2,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-3,2,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-3,2,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-3,-2,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-3,-2,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,3,5,2] => 00000 => [6] => ([],6) => 1
[1,4,3,5,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,3,-5,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,3,-5,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-3,5,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,4,-3,5,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,4,-3,-5,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-3,-5,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,3,5,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-4,3,5,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,3,-5,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,3,-5,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-3,5,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-3,5,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-3,-5,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-3,-5,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,4,3,5,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,4,3,5,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,3,-5,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,3,-5,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-3,5,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-3,5,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,4,-3,-5,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-3,-5,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,3,5,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-4,3,5,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,3,-5,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,3,-5,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-3,5,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-3,5,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-3,-5,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-3,-5,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,5,2,3] => 00000 => [6] => ([],6) => 1
[1,4,5,2,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,5,-2,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,5,-2,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-5,2,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,4,-5,2,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,4,-5,-2,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-5,-2,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,5,2,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-4,5,2,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,5,-2,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,5,-2,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-5,2,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-5,2,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-5,-2,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-5,-2,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,4,5,2,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,4,5,2,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,5,-2,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,5,-2,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-5,2,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-5,2,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,4,-5,-2,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-5,-2,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,5,2,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-4,5,2,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,5,-2,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,5,-2,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-5,2,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-5,2,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-5,-2,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-5,-2,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,5,3,2] => 00000 => [6] => ([],6) => 1
[1,4,5,3,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,5,-3,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,4,5,-3,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-5,3,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,4,-5,3,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,4,-5,-3,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,-5,-3,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,5,3,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-4,5,3,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,5,-3,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,5,-3,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-5,3,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-5,3,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-4,-5,-3,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-4,-5,-3,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,4,5,3,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,4,5,3,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,5,-3,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,5,-3,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-5,3,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-5,3,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,4,-5,-3,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,4,-5,-3,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,5,3,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-4,5,3,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,5,-3,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,5,-3,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-5,3,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-5,3,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-4,-5,-3,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-4,-5,-3,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,2,3,4] => 00000 => [6] => ([],6) => 1
[1,5,2,3,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,2,-3,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,2,-3,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-2,3,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,5,-2,3,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,5,-2,-3,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-2,-3,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,2,3,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-5,2,3,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,2,-3,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,2,-3,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-2,3,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-2,3,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-2,-3,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-2,-3,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,5,2,3,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,5,2,3,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,2,-3,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,2,-3,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-2,3,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-2,3,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,5,-2,-3,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-2,-3,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,2,3,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-5,2,3,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,2,-3,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,2,-3,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-2,3,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-2,3,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-2,-3,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-2,-3,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,2,4,3] => 00000 => [6] => ([],6) => 1
[1,5,2,4,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,2,-4,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,2,-4,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-2,4,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,5,-2,4,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,5,-2,-4,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-2,-4,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,2,4,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-5,2,4,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,2,-4,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,2,-4,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-2,4,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-2,4,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-2,-4,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-2,-4,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,5,2,4,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,5,2,4,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,2,-4,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,2,-4,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-2,4,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-2,4,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,5,-2,-4,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-2,-4,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,2,4,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-5,2,4,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,2,-4,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,2,-4,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-2,4,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-2,4,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-2,-4,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-2,-4,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,3,2,4] => 00000 => [6] => ([],6) => 1
[1,5,3,2,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,3,-2,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,3,-2,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-3,2,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,5,-3,2,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,5,-3,-2,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-3,-2,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,3,2,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-5,3,2,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,3,-2,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,3,-2,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-3,2,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-3,2,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-3,-2,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-3,-2,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,5,3,2,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,5,3,2,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,3,-2,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,3,-2,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-3,2,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-3,2,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,5,-3,-2,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-3,-2,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,3,2,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-5,3,2,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,3,-2,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,3,-2,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-3,2,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-3,2,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-3,-2,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-3,-2,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,3,4,2] => 00000 => [6] => ([],6) => 1
[1,5,3,4,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,3,-4,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,3,-4,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-3,4,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,5,-3,4,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,5,-3,-4,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-3,-4,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,3,4,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-5,3,4,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,3,-4,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,3,-4,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-3,4,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-3,4,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-3,-4,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-3,-4,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,5,3,4,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,5,3,4,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,3,-4,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,3,-4,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-3,4,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-3,4,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,5,-3,-4,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-3,-4,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,3,4,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-5,3,4,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,3,-4,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,3,-4,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-3,4,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-3,4,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-3,-4,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-3,-4,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,4,2,3] => 00000 => [6] => ([],6) => 1
[1,5,4,2,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,4,-2,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,4,-2,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-4,2,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,5,-4,2,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,5,-4,-2,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-4,-2,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,4,2,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-5,4,2,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,4,-2,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,4,-2,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-4,2,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-4,2,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-4,-2,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-4,-2,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,5,4,2,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,5,4,2,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,4,-2,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,4,-2,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-4,2,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-4,2,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,5,-4,-2,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-4,-2,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,4,2,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-5,4,2,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,4,-2,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,4,-2,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-4,2,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-4,2,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-4,-2,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-4,-2,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,4,3,2] => 00000 => [6] => ([],6) => 1
[1,5,4,3,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,4,-3,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[1,5,4,-3,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-4,3,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[1,5,-4,3,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,5,-4,-3,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,5,-4,-3,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,4,3,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[1,-5,4,3,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,4,-3,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,4,-3,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-4,3,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-4,3,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,-5,-4,-3,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,-5,-4,-3,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-1,5,4,3,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-1,5,4,3,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,4,-3,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,4,-3,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-4,3,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-4,3,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-1,5,-4,-3,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,5,-4,-3,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,4,3,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-1,-5,4,3,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,4,-3,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,4,-3,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-4,3,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-4,3,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-1,-5,-4,-3,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-1,-5,-4,-3,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,3,4,5] => 00000 => [6] => ([],6) => 1
[2,1,3,4,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,3,-4,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,3,-4,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-3,4,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,1,-3,4,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,1,-3,-4,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-3,-4,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,3,4,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-1,3,4,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,3,-4,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,3,-4,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-3,4,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-3,4,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-3,-4,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-3,-4,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,1,3,4,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,1,3,4,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,3,-4,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,3,-4,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-3,4,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-3,4,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,1,-3,-4,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-3,-4,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,3,4,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-1,3,4,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,3,-4,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,3,-4,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-3,4,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-3,4,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-3,-4,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-3,-4,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,3,5,4] => 00000 => [6] => ([],6) => 1
[2,1,3,5,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,3,-5,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,3,-5,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-3,5,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,1,-3,5,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,1,-3,-5,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-3,-5,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,3,5,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-1,3,5,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,3,-5,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,3,-5,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-3,5,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-3,5,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-3,-5,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-3,-5,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,1,3,5,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,1,3,5,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,3,-5,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,3,-5,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-3,5,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-3,5,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,1,-3,-5,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-3,-5,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,3,5,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-1,3,5,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,3,-5,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,3,-5,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-3,5,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-3,5,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-3,-5,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-3,-5,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,4,3,5] => 00000 => [6] => ([],6) => 1
[2,1,4,3,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,4,-3,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,4,-3,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-4,3,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,1,-4,3,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,1,-4,-3,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-4,-3,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,4,3,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-1,4,3,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,4,-3,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,4,-3,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-4,3,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-4,3,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-4,-3,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-4,-3,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,1,4,3,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,1,4,3,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,4,-3,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,4,-3,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-4,3,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-4,3,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,1,-4,-3,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-4,-3,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,4,3,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-1,4,3,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,4,-3,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,4,-3,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-4,3,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-4,3,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-4,-3,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-4,-3,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,4,5,3] => 00000 => [6] => ([],6) => 1
[2,1,4,5,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,4,-5,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,4,-5,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-4,5,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,1,-4,5,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,1,-4,-5,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-4,-5,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,4,5,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-1,4,5,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,4,-5,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,4,-5,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-4,5,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-4,5,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-4,-5,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-4,-5,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,1,4,5,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,1,4,5,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,4,-5,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,4,-5,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-4,5,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-4,5,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,1,-4,-5,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-4,-5,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,4,5,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-1,4,5,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,4,-5,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,4,-5,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-4,5,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-4,5,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-4,-5,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-4,-5,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,5,3,4] => 00000 => [6] => ([],6) => 1
[2,1,5,3,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,5,-3,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,5,-3,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-5,3,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,1,-5,3,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,1,-5,-3,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-5,-3,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,5,3,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-1,5,3,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,5,-3,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,5,-3,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-5,3,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-5,3,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-5,-3,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-5,-3,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,1,5,3,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,1,5,3,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,5,-3,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,5,-3,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-5,3,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-5,3,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,1,-5,-3,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-5,-3,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,5,3,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-1,5,3,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,5,-3,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,5,-3,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-5,3,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-5,3,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-5,-3,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-5,-3,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,5,4,3] => 00000 => [6] => ([],6) => 1
[2,1,5,4,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,5,-4,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,1,5,-4,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-5,4,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,1,-5,4,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,1,-5,-4,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,-5,-4,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,5,4,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-1,5,4,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,5,-4,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,5,-4,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-5,4,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-5,4,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-1,-5,-4,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-1,-5,-4,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,1,5,4,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,1,5,4,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,5,-4,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,5,-4,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-5,4,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-5,4,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,1,-5,-4,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,1,-5,-4,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,5,4,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-1,5,4,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,5,-4,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,5,-4,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-5,4,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-5,4,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-1,-5,-4,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-1,-5,-4,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,3,1,4,5] => 00000 => [6] => ([],6) => 1
[2,3,1,4,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,1,-4,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,1,-4,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-1,4,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,3,-1,4,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,3,-1,-4,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-1,-4,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,1,4,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-3,1,4,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,1,-4,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,1,-4,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-1,4,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-1,4,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-1,-4,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-1,-4,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,3,1,4,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,3,1,4,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,1,-4,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,1,-4,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-1,4,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-1,4,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,3,-1,-4,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-1,-4,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,1,4,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-3,1,4,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,1,-4,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,1,-4,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-1,4,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-1,4,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-1,-4,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-1,-4,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,3,1,5,4] => 00000 => [6] => ([],6) => 1
[2,3,1,5,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,1,-5,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,1,-5,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-1,5,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,3,-1,5,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,3,-1,-5,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-1,-5,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,1,5,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-3,1,5,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,1,-5,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,1,-5,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-1,5,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-1,5,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-1,-5,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-1,-5,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,3,1,5,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,3,1,5,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,1,-5,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,1,-5,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-1,5,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-1,5,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,3,-1,-5,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-1,-5,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,1,5,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-3,1,5,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,1,-5,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,1,-5,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-1,5,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-1,5,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-1,-5,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-1,-5,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,3,4,1,5] => 00000 => [6] => ([],6) => 1
[2,3,4,1,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,4,-1,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,4,-1,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-4,1,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,3,-4,1,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,3,-4,-1,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-4,-1,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,4,1,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-3,4,1,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,4,-1,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,4,-1,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-4,1,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-4,1,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-4,-1,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-4,-1,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,3,4,1,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,3,4,1,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,4,-1,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,4,-1,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-4,1,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-4,1,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,3,-4,-1,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-4,-1,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,4,1,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-3,4,1,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,4,-1,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,4,-1,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-4,1,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-4,1,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-4,-1,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-4,-1,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,3,4,5,1] => 00000 => [6] => ([],6) => 1
[2,3,4,5,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,4,-5,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,4,-5,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-4,5,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,3,-4,5,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,3,-4,-5,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-4,-5,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,4,5,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-3,4,5,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,4,-5,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,4,-5,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-4,5,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-4,5,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-4,-5,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-4,-5,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,3,4,5,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,3,4,5,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,4,-5,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,4,-5,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-4,5,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-4,5,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,3,-4,-5,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-4,-5,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,4,5,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-3,4,5,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,4,-5,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,4,-5,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-4,5,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-4,5,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-4,-5,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-4,-5,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,3,5,1,4] => 00000 => [6] => ([],6) => 1
[2,3,5,1,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,5,-1,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,5,-1,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-5,1,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,3,-5,1,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,3,-5,-1,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-5,-1,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,5,1,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-3,5,1,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,5,-1,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,5,-1,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-5,1,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-5,1,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-5,-1,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-5,-1,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,3,5,1,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,3,5,1,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,5,-1,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,5,-1,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-5,1,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-5,1,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,3,-5,-1,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-5,-1,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,5,1,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-3,5,1,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,5,-1,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,5,-1,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-5,1,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-5,1,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-5,-1,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-5,-1,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,3,5,4,1] => 00000 => [6] => ([],6) => 1
[2,3,5,4,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,5,-4,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,3,5,-4,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-5,4,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,3,-5,4,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,3,-5,-4,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,-5,-4,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,5,4,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-3,5,4,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,5,-4,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,5,-4,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-5,4,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-5,4,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-3,-5,-4,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-3,-5,-4,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,3,5,4,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,3,5,4,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,5,-4,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,5,-4,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-5,4,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-5,4,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,3,-5,-4,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,3,-5,-4,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,5,4,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-3,5,4,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,5,-4,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,5,-4,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-5,4,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-5,4,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-3,-5,-4,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-3,-5,-4,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,4,1,3,5] => 00000 => [6] => ([],6) => 1
[2,4,1,3,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,1,-3,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,1,-3,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-1,3,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,4,-1,3,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,4,-1,-3,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-1,-3,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,1,3,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-4,1,3,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,1,-3,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,1,-3,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-1,3,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-1,3,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-1,-3,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-1,-3,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,4,1,3,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,4,1,3,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,1,-3,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,1,-3,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-1,3,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-1,3,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,4,-1,-3,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-1,-3,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,1,3,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-4,1,3,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,1,-3,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,1,-3,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-1,3,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-1,3,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-1,-3,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-1,-3,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,4,1,5,3] => 00000 => [6] => ([],6) => 1
[2,4,1,5,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,1,-5,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,1,-5,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-1,5,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,4,-1,5,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,4,-1,-5,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-1,-5,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,1,5,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-4,1,5,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,1,-5,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,1,-5,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-1,5,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-1,5,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-1,-5,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-1,-5,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,4,1,5,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,4,1,5,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,1,-5,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,1,-5,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-1,5,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-1,5,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,4,-1,-5,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-1,-5,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,1,5,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-4,1,5,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,1,-5,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,1,-5,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-1,5,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-1,5,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-1,-5,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-1,-5,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,4,3,1,5] => 00000 => [6] => ([],6) => 1
[2,4,3,1,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,3,-1,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,3,-1,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-3,1,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,4,-3,1,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,4,-3,-1,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-3,-1,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,3,1,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-4,3,1,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,3,-1,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,3,-1,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-3,1,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-3,1,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-3,-1,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-3,-1,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,4,3,1,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,4,3,1,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,3,-1,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,3,-1,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-3,1,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-3,1,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,4,-3,-1,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-3,-1,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,3,1,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-4,3,1,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,3,-1,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,3,-1,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-3,1,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-3,1,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-3,-1,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-3,-1,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,4,3,5,1] => 00000 => [6] => ([],6) => 1
[2,4,3,5,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,3,-5,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,3,-5,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-3,5,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,4,-3,5,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,4,-3,-5,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-3,-5,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,3,5,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-4,3,5,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,3,-5,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,3,-5,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-3,5,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-3,5,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-3,-5,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-3,-5,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,4,3,5,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,4,3,5,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,3,-5,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,3,-5,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-3,5,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-3,5,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,4,-3,-5,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-3,-5,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,3,5,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-4,3,5,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,3,-5,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,3,-5,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-3,5,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-3,5,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-3,-5,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-3,-5,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,4,5,1,3] => 00000 => [6] => ([],6) => 1
[2,4,5,1,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,5,-1,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,5,-1,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-5,1,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,4,-5,1,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,4,-5,-1,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-5,-1,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,5,1,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-4,5,1,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,5,-1,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,5,-1,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-5,1,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-5,1,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-5,-1,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-5,-1,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,4,5,1,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,4,5,1,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,5,-1,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,5,-1,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-5,1,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-5,1,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,4,-5,-1,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-5,-1,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,5,1,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-4,5,1,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,5,-1,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,5,-1,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-5,1,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-5,1,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-5,-1,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-5,-1,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,4,5,3,1] => 00000 => [6] => ([],6) => 1
[2,4,5,3,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,5,-3,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,4,5,-3,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-5,3,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,4,-5,3,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,4,-5,-3,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,-5,-3,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,5,3,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-4,5,3,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,5,-3,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,5,-3,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-5,3,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-5,3,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-4,-5,-3,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-4,-5,-3,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,4,5,3,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,4,5,3,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,5,-3,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,5,-3,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-5,3,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-5,3,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,4,-5,-3,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,4,-5,-3,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,5,3,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-4,5,3,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,5,-3,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,5,-3,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-5,3,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-5,3,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-4,-5,-3,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-4,-5,-3,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,5,1,3,4] => 00000 => [6] => ([],6) => 1
[2,5,1,3,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,1,-3,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,1,-3,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-1,3,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,5,-1,3,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,5,-1,-3,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-1,-3,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,1,3,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-5,1,3,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,1,-3,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,1,-3,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-1,3,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-1,3,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-1,-3,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-1,-3,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,5,1,3,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,5,1,3,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,1,-3,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,1,-3,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-1,3,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-1,3,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,5,-1,-3,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-1,-3,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,1,3,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-5,1,3,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,1,-3,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,1,-3,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-1,3,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-1,3,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-1,-3,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-1,-3,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,5,1,4,3] => 00000 => [6] => ([],6) => 1
[2,5,1,4,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,1,-4,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,1,-4,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-1,4,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,5,-1,4,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,5,-1,-4,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-1,-4,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,1,4,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-5,1,4,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,1,-4,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,1,-4,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-1,4,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-1,4,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-1,-4,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-1,-4,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,5,1,4,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,5,1,4,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,1,-4,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,1,-4,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-1,4,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-1,4,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,5,-1,-4,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-1,-4,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,1,4,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-5,1,4,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,1,-4,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,1,-4,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-1,4,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-1,4,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-1,-4,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-1,-4,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,5,3,1,4] => 00000 => [6] => ([],6) => 1
[2,5,3,1,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,3,-1,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,3,-1,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-3,1,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,5,-3,1,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,5,-3,-1,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-3,-1,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,3,1,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-5,3,1,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,3,-1,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,3,-1,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-3,1,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-3,1,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-3,-1,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-3,-1,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,5,3,1,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,5,3,1,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,3,-1,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,3,-1,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-3,1,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-3,1,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,5,-3,-1,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-3,-1,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,3,1,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-5,3,1,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,3,-1,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,3,-1,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-3,1,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-3,1,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-3,-1,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-3,-1,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,5,3,4,1] => 00000 => [6] => ([],6) => 1
[2,5,3,4,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,3,-4,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,3,-4,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-3,4,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,5,-3,4,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,5,-3,-4,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-3,-4,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,3,4,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-5,3,4,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,3,-4,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,3,-4,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-3,4,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-3,4,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-3,-4,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-3,-4,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,5,3,4,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,5,3,4,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,3,-4,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,3,-4,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-3,4,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-3,4,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,5,-3,-4,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-3,-4,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,3,4,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-5,3,4,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,3,-4,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,3,-4,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-3,4,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-3,4,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-3,-4,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-3,-4,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,5,4,1,3] => 00000 => [6] => ([],6) => 1
[2,5,4,1,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,4,-1,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,4,-1,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-4,1,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,5,-4,1,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,5,-4,-1,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-4,-1,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,4,1,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-5,4,1,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,4,-1,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,4,-1,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-4,1,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-4,1,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-4,-1,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-4,-1,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,5,4,1,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,5,4,1,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,4,-1,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,4,-1,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-4,1,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-4,1,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,5,-4,-1,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-4,-1,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,4,1,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-5,4,1,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,4,-1,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,4,-1,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-4,1,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-4,1,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-4,-1,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-4,-1,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,5,4,3,1] => 00000 => [6] => ([],6) => 1
[2,5,4,3,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,4,-3,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[2,5,4,-3,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-4,3,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[2,5,-4,3,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,5,-4,-3,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,5,-4,-3,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,4,3,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[2,-5,4,3,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,4,-3,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,4,-3,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-4,3,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-4,3,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[2,-5,-4,-3,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,-5,-4,-3,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-2,5,4,3,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-2,5,4,3,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,4,-3,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,4,-3,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-4,3,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-4,3,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-2,5,-4,-3,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,5,-4,-3,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,4,3,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-2,-5,4,3,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,4,-3,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,4,-3,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-4,3,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-4,3,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-2,-5,-4,-3,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-2,-5,-4,-3,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,2,4,5] => 00000 => [6] => ([],6) => 1
[3,1,2,4,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,2,-4,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,2,-4,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-2,4,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,1,-2,4,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,1,-2,-4,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-2,-4,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,2,4,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-1,2,4,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,2,-4,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,2,-4,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-2,4,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-2,4,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-2,-4,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-2,-4,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,1,2,4,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,1,2,4,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,2,-4,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,2,-4,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-2,4,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-2,4,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,1,-2,-4,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-2,-4,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,2,4,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-1,2,4,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,2,-4,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,2,-4,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-2,4,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-2,4,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-2,-4,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-2,-4,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,2,5,4] => 00000 => [6] => ([],6) => 1
[3,1,2,5,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,2,-5,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,2,-5,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-2,5,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,1,-2,5,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,1,-2,-5,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-2,-5,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,2,5,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-1,2,5,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,2,-5,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,2,-5,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-2,5,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-2,5,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-2,-5,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-2,-5,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,1,2,5,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,1,2,5,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,2,-5,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,2,-5,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-2,5,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-2,5,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,1,-2,-5,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-2,-5,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,2,5,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-1,2,5,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,2,-5,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,2,-5,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-2,5,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-2,5,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-2,-5,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-2,-5,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,4,2,5] => 00000 => [6] => ([],6) => 1
[3,1,4,2,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,4,-2,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,4,-2,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-4,2,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,1,-4,2,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,1,-4,-2,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-4,-2,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,4,2,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-1,4,2,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,4,-2,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,4,-2,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-4,2,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-4,2,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-4,-2,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-4,-2,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,1,4,2,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,1,4,2,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,4,-2,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,4,-2,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-4,2,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-4,2,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,1,-4,-2,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-4,-2,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,4,2,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-1,4,2,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,4,-2,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,4,-2,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-4,2,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-4,2,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-4,-2,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-4,-2,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,4,5,2] => 00000 => [6] => ([],6) => 1
[3,1,4,5,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,4,-5,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,4,-5,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-4,5,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,1,-4,5,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,1,-4,-5,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-4,-5,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,4,5,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-1,4,5,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,4,-5,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,4,-5,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-4,5,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-4,5,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-4,-5,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-4,-5,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,1,4,5,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,1,4,5,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,4,-5,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,4,-5,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-4,5,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-4,5,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,1,-4,-5,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-4,-5,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,4,5,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-1,4,5,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,4,-5,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,4,-5,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-4,5,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-4,5,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-4,-5,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-4,-5,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,5,2,4] => 00000 => [6] => ([],6) => 1
[3,1,5,2,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,5,-2,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,5,-2,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-5,2,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,1,-5,2,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,1,-5,-2,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-5,-2,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,5,2,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-1,5,2,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,5,-2,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,5,-2,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-5,2,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-5,2,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-5,-2,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-5,-2,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,1,5,2,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,1,5,2,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,5,-2,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,5,-2,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-5,2,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-5,2,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,1,-5,-2,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-5,-2,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,5,2,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-1,5,2,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,5,-2,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,5,-2,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-5,2,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-5,2,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-5,-2,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-5,-2,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,5,4,2] => 00000 => [6] => ([],6) => 1
[3,1,5,4,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,5,-4,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,1,5,-4,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-5,4,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,1,-5,4,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,1,-5,-4,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,-5,-4,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,5,4,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-1,5,4,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,5,-4,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,5,-4,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-5,4,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-5,4,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-1,-5,-4,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-1,-5,-4,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,1,5,4,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,1,5,4,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,5,-4,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,5,-4,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-5,4,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-5,4,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,1,-5,-4,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,1,-5,-4,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,5,4,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-1,5,4,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,5,-4,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,5,-4,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-5,4,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-5,4,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-1,-5,-4,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-1,-5,-4,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,1,4,5] => 00000 => [6] => ([],6) => 1
[3,2,1,4,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,1,-4,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,1,-4,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-1,4,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,2,-1,4,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,2,-1,-4,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-1,-4,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,1,4,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-2,1,4,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,1,-4,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,1,-4,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-1,4,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-1,4,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-1,-4,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-1,-4,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,2,1,4,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,2,1,4,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,1,-4,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,1,-4,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-1,4,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-1,4,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,2,-1,-4,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-1,-4,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,1,4,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-2,1,4,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,1,-4,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,1,-4,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-1,4,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-1,4,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-1,-4,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-1,-4,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,1,5,4] => 00000 => [6] => ([],6) => 1
[3,2,1,5,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,1,-5,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,1,-5,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-1,5,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,2,-1,5,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,2,-1,-5,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-1,-5,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,1,5,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-2,1,5,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,1,-5,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,1,-5,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-1,5,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-1,5,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-1,-5,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-1,-5,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,2,1,5,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,2,1,5,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,1,-5,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,1,-5,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-1,5,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-1,5,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,2,-1,-5,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-1,-5,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,1,5,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-2,1,5,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,1,-5,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,1,-5,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-1,5,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-1,5,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-1,-5,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-1,-5,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,4,1,5] => 00000 => [6] => ([],6) => 1
[3,2,4,1,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,4,-1,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,4,-1,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-4,1,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,2,-4,1,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,2,-4,-1,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-4,-1,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,4,1,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-2,4,1,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,4,-1,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,4,-1,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-4,1,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-4,1,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-4,-1,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-4,-1,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,2,4,1,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,2,4,1,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,4,-1,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,4,-1,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-4,1,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-4,1,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,2,-4,-1,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-4,-1,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,4,1,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-2,4,1,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,4,-1,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,4,-1,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-4,1,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-4,1,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-4,-1,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-4,-1,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,4,5,1] => 00000 => [6] => ([],6) => 1
[3,2,4,5,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,4,-5,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,4,-5,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-4,5,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,2,-4,5,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,2,-4,-5,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-4,-5,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,4,5,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-2,4,5,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,4,-5,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,4,-5,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-4,5,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-4,5,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-4,-5,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-4,-5,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,2,4,5,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,2,4,5,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,4,-5,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,4,-5,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-4,5,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-4,5,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,2,-4,-5,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-4,-5,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,4,5,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-2,4,5,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,4,-5,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,4,-5,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-4,5,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-4,5,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-4,-5,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-4,-5,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,5,1,4] => 00000 => [6] => ([],6) => 1
[3,2,5,1,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,5,-1,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,5,-1,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-5,1,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,2,-5,1,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,2,-5,-1,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-5,-1,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,5,1,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-2,5,1,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,5,-1,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,5,-1,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-5,1,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-5,1,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-5,-1,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-5,-1,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,2,5,1,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,2,5,1,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,5,-1,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,5,-1,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-5,1,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-5,1,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,2,-5,-1,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-5,-1,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,5,1,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-2,5,1,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,5,-1,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,5,-1,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-5,1,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-5,1,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-5,-1,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-5,-1,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,5,4,1] => 00000 => [6] => ([],6) => 1
[3,2,5,4,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,5,-4,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,2,5,-4,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-5,4,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,2,-5,4,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,2,-5,-4,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,-5,-4,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,5,4,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-2,5,4,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,5,-4,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,5,-4,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-5,4,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-5,4,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-2,-5,-4,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-2,-5,-4,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,2,5,4,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,2,5,4,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,5,-4,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,5,-4,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-5,4,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-5,4,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,2,-5,-4,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,2,-5,-4,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,5,4,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-2,5,4,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,5,-4,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,5,-4,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-5,4,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-5,4,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-2,-5,-4,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-2,-5,-4,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,4,1,2,5] => 00000 => [6] => ([],6) => 1
[3,4,1,2,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,1,-2,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,1,-2,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-1,2,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,4,-1,2,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,4,-1,-2,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-1,-2,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,1,2,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-4,1,2,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,1,-2,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,1,-2,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-1,2,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-1,2,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-1,-2,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-1,-2,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,4,1,2,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,4,1,2,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,1,-2,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,1,-2,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-1,2,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-1,2,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,4,-1,-2,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-1,-2,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,1,2,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-4,1,2,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,1,-2,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,1,-2,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-1,2,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-1,2,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-1,-2,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-1,-2,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,4,1,5,2] => 00000 => [6] => ([],6) => 1
[3,4,1,5,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,1,-5,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,1,-5,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-1,5,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,4,-1,5,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,4,-1,-5,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-1,-5,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,1,5,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-4,1,5,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,1,-5,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,1,-5,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-1,5,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-1,5,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-1,-5,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-1,-5,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,4,1,5,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,4,1,5,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,1,-5,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,1,-5,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-1,5,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-1,5,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,4,-1,-5,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-1,-5,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,1,5,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-4,1,5,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,1,-5,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,1,-5,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-1,5,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-1,5,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-1,-5,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-1,-5,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,4,2,1,5] => 00000 => [6] => ([],6) => 1
[3,4,2,1,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,2,-1,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,2,-1,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-2,1,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,4,-2,1,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,4,-2,-1,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-2,-1,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,2,1,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-4,2,1,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,2,-1,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,2,-1,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-2,1,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-2,1,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-2,-1,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-2,-1,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,4,2,1,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,4,2,1,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,2,-1,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,2,-1,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-2,1,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-2,1,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,4,-2,-1,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-2,-1,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,2,1,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-4,2,1,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,2,-1,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,2,-1,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-2,1,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-2,1,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-2,-1,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-2,-1,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,4,2,5,1] => 00000 => [6] => ([],6) => 1
[3,4,2,5,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,2,-5,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,2,-5,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-2,5,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,4,-2,5,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,4,-2,-5,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-2,-5,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,2,5,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-4,2,5,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,2,-5,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,2,-5,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-2,5,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-2,5,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-2,-5,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-2,-5,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,4,2,5,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,4,2,5,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,2,-5,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,2,-5,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-2,5,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-2,5,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,4,-2,-5,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-2,-5,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,2,5,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-4,2,5,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,2,-5,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,2,-5,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-2,5,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-2,5,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-2,-5,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-2,-5,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,4,5,1,2] => 00000 => [6] => ([],6) => 1
[3,4,5,1,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,5,-1,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,5,-1,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-5,1,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,4,-5,1,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,4,-5,-1,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-5,-1,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,5,1,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-4,5,1,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,5,-1,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,5,-1,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-5,1,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-5,1,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-5,-1,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-5,-1,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,4,5,1,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,4,5,1,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,5,-1,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,5,-1,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-5,1,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-5,1,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,4,-5,-1,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-5,-1,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,5,1,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-4,5,1,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,5,-1,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,5,-1,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-5,1,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-5,1,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-5,-1,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-5,-1,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,4,5,2,1] => 00000 => [6] => ([],6) => 1
[3,4,5,2,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,5,-2,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,4,5,-2,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-5,2,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,4,-5,2,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,4,-5,-2,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,4,-5,-2,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,5,2,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-4,5,2,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,5,-2,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,5,-2,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-5,2,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-5,2,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-4,-5,-2,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-4,-5,-2,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,4,5,2,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,4,5,2,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,5,-2,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,5,-2,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-5,2,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-5,2,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,4,-5,-2,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,4,-5,-2,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,5,2,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-4,5,2,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,5,-2,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,5,-2,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-5,2,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-5,2,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-4,-5,-2,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-4,-5,-2,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,5,1,2,4] => 00000 => [6] => ([],6) => 1
[3,5,1,2,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,1,-2,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,1,-2,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-1,2,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,5,-1,2,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,5,-1,-2,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-1,-2,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,1,2,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-5,1,2,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,1,-2,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,1,-2,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-1,2,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-1,2,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-1,-2,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-1,-2,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,5,1,2,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,5,1,2,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,1,-2,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,1,-2,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-1,2,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-1,2,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,5,-1,-2,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-1,-2,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,1,2,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-5,1,2,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,1,-2,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,1,-2,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-1,2,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-1,2,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-1,-2,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-1,-2,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,5,1,4,2] => 00000 => [6] => ([],6) => 1
[3,5,1,4,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,1,-4,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,1,-4,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-1,4,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,5,-1,4,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,5,-1,-4,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-1,-4,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,1,4,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-5,1,4,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,1,-4,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,1,-4,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-1,4,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-1,4,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-1,-4,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-1,-4,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,5,1,4,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,5,1,4,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,1,-4,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,1,-4,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-1,4,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-1,4,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,5,-1,-4,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-1,-4,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,1,4,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-5,1,4,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,1,-4,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,1,-4,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-1,4,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-1,4,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-1,-4,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-1,-4,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,5,2,1,4] => 00000 => [6] => ([],6) => 1
[3,5,2,1,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,2,-1,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,2,-1,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-2,1,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,5,-2,1,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,5,-2,-1,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-2,-1,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,2,1,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-5,2,1,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,2,-1,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,2,-1,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-2,1,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-2,1,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-2,-1,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-2,-1,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,5,2,1,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,5,2,1,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,2,-1,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,2,-1,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-2,1,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-2,1,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,5,-2,-1,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-2,-1,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,2,1,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-5,2,1,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,2,-1,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,2,-1,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-2,1,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-2,1,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-2,-1,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-2,-1,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,5,2,4,1] => 00000 => [6] => ([],6) => 1
[3,5,2,4,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,2,-4,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,2,-4,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-2,4,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,5,-2,4,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,5,-2,-4,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-2,-4,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,2,4,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-5,2,4,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,2,-4,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,2,-4,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-2,4,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-2,4,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-2,-4,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-2,-4,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,5,2,4,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,5,2,4,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,2,-4,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,2,-4,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-2,4,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-2,4,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,5,-2,-4,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-2,-4,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,2,4,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-5,2,4,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,2,-4,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,2,-4,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-2,4,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-2,4,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-2,-4,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-2,-4,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,5,4,1,2] => 00000 => [6] => ([],6) => 1
[3,5,4,1,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,4,-1,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,4,-1,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-4,1,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,5,-4,1,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,5,-4,-1,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-4,-1,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,4,1,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-5,4,1,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,4,-1,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,4,-1,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-4,1,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-4,1,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-4,-1,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-4,-1,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,5,4,1,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,5,4,1,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,4,-1,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,4,-1,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-4,1,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-4,1,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,5,-4,-1,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-4,-1,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,4,1,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-5,4,1,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,4,-1,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,4,-1,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-4,1,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-4,1,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-4,-1,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-4,-1,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,5,4,2,1] => 00000 => [6] => ([],6) => 1
[3,5,4,2,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,4,-2,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[3,5,4,-2,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-4,2,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[3,5,-4,2,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,5,-4,-2,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,5,-4,-2,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,4,2,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[3,-5,4,2,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,4,-2,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,4,-2,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-4,2,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-4,2,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[3,-5,-4,-2,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,-5,-4,-2,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-3,5,4,2,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-3,5,4,2,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,4,-2,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,4,-2,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-4,2,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-4,2,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-3,5,-4,-2,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,5,-4,-2,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,4,2,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-3,-5,4,2,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,4,-2,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,4,-2,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-4,2,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-4,2,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-3,-5,-4,-2,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-3,-5,-4,-2,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,2,3,5] => 00000 => [6] => ([],6) => 1
[4,1,2,3,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,2,-3,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,2,-3,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-2,3,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,1,-2,3,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,1,-2,-3,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-2,-3,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,2,3,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-1,2,3,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,2,-3,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,2,-3,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-2,3,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-2,3,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-2,-3,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-2,-3,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,1,2,3,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,1,2,3,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,2,-3,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,2,-3,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-2,3,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-2,3,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,1,-2,-3,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-2,-3,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,2,3,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-1,2,3,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,2,-3,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,2,-3,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-2,3,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-2,3,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-2,-3,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-2,-3,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,2,5,3] => 00000 => [6] => ([],6) => 1
[4,1,2,5,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,2,-5,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,2,-5,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-2,5,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,1,-2,5,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,1,-2,-5,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-2,-5,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,2,5,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-1,2,5,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,2,-5,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,2,-5,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-2,5,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-2,5,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-2,-5,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-2,-5,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,1,2,5,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,1,2,5,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,2,-5,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,2,-5,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-2,5,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-2,5,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,1,-2,-5,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-2,-5,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,2,5,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-1,2,5,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,2,-5,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,2,-5,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-2,5,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-2,5,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-2,-5,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-2,-5,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,3,2,5] => 00000 => [6] => ([],6) => 1
[4,1,3,2,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,3,-2,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,3,-2,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-3,2,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,1,-3,2,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,1,-3,-2,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-3,-2,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,3,2,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-1,3,2,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,3,-2,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,3,-2,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-3,2,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-3,2,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-3,-2,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-3,-2,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,1,3,2,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,1,3,2,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,3,-2,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,3,-2,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-3,2,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-3,2,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,1,-3,-2,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-3,-2,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,3,2,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-1,3,2,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,3,-2,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,3,-2,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-3,2,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-3,2,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-3,-2,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-3,-2,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,3,5,2] => 00000 => [6] => ([],6) => 1
[4,1,3,5,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,3,-5,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,3,-5,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-3,5,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,1,-3,5,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,1,-3,-5,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-3,-5,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,3,5,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-1,3,5,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,3,-5,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,3,-5,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-3,5,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-3,5,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-3,-5,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-3,-5,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,1,3,5,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,1,3,5,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,3,-5,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,3,-5,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-3,5,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-3,5,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,1,-3,-5,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-3,-5,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,3,5,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-1,3,5,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,3,-5,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,3,-5,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-3,5,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-3,5,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-3,-5,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-3,-5,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,5,2,3] => 00000 => [6] => ([],6) => 1
[4,1,5,2,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,5,-2,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,5,-2,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-5,2,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,1,-5,2,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,1,-5,-2,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-5,-2,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,5,2,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-1,5,2,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,5,-2,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,5,-2,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-5,2,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-5,2,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-5,-2,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-5,-2,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,1,5,2,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,1,5,2,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,5,-2,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,5,-2,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-5,2,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-5,2,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,1,-5,-2,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-5,-2,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,5,2,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-1,5,2,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,5,-2,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,5,-2,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-5,2,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-5,2,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-5,-2,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-5,-2,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,5,3,2] => 00000 => [6] => ([],6) => 1
[4,1,5,3,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,5,-3,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,1,5,-3,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-5,3,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,1,-5,3,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,1,-5,-3,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,-5,-3,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,5,3,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-1,5,3,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,5,-3,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,5,-3,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-5,3,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-5,3,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-1,-5,-3,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-1,-5,-3,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,1,5,3,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,1,5,3,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,5,-3,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,5,-3,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-5,3,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-5,3,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,1,-5,-3,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,1,-5,-3,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,5,3,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-1,5,3,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,5,-3,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,5,-3,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-5,3,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-5,3,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-1,-5,-3,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-1,-5,-3,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,2,1,3,5] => 00000 => [6] => ([],6) => 1
[4,2,1,3,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,1,-3,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,1,-3,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-1,3,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,2,-1,3,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,2,-1,-3,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-1,-3,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,1,3,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-2,1,3,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,1,-3,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,1,-3,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-1,3,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-1,3,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-1,-3,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-1,-3,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,2,1,3,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,2,1,3,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,1,-3,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,1,-3,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-1,3,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-1,3,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,2,-1,-3,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-1,-3,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,1,3,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-2,1,3,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,1,-3,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,1,-3,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-1,3,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-1,3,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-1,-3,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-1,-3,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,2,1,5,3] => 00000 => [6] => ([],6) => 1
[4,2,1,5,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,1,-5,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,1,-5,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-1,5,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,2,-1,5,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,2,-1,-5,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-1,-5,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,1,5,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-2,1,5,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,1,-5,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,1,-5,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-1,5,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-1,5,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-1,-5,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-1,-5,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,2,1,5,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,2,1,5,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,1,-5,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,1,-5,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-1,5,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-1,5,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,2,-1,-5,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-1,-5,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,1,5,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-2,1,5,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,1,-5,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,1,-5,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-1,5,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-1,5,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-1,-5,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-1,-5,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,2,3,1,5] => 00000 => [6] => ([],6) => 1
[4,2,3,1,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,3,-1,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,3,-1,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-3,1,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,2,-3,1,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,2,-3,-1,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-3,-1,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,3,1,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-2,3,1,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,3,-1,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,3,-1,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-3,1,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-3,1,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-3,-1,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-3,-1,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,2,3,1,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,2,3,1,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,3,-1,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,3,-1,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-3,1,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-3,1,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,2,-3,-1,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-3,-1,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,3,1,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-2,3,1,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,3,-1,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,3,-1,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-3,1,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-3,1,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-3,-1,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-3,-1,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,2,3,5,1] => 00000 => [6] => ([],6) => 1
[4,2,3,5,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,3,-5,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,3,-5,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-3,5,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,2,-3,5,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,2,-3,-5,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-3,-5,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,3,5,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-2,3,5,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,3,-5,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,3,-5,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-3,5,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-3,5,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-3,-5,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-3,-5,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,2,3,5,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,2,3,5,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,3,-5,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,3,-5,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-3,5,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-3,5,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,2,-3,-5,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-3,-5,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,3,5,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-2,3,5,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,3,-5,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,3,-5,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-3,5,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-3,5,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-3,-5,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-3,-5,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,2,5,1,3] => 00000 => [6] => ([],6) => 1
[4,2,5,1,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,5,-1,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,5,-1,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-5,1,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,2,-5,1,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,2,-5,-1,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-5,-1,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,5,1,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-2,5,1,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,5,-1,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,5,-1,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-5,1,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-5,1,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-5,-1,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-5,-1,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,2,5,1,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,2,5,1,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,5,-1,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,5,-1,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-5,1,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-5,1,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,2,-5,-1,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-5,-1,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,5,1,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-2,5,1,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,5,-1,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,5,-1,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-5,1,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-5,1,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-5,-1,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-5,-1,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,2,5,3,1] => 00000 => [6] => ([],6) => 1
[4,2,5,3,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,5,-3,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,2,5,-3,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-5,3,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,2,-5,3,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,2,-5,-3,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,-5,-3,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,5,3,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-2,5,3,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,5,-3,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,5,-3,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-5,3,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-5,3,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-2,-5,-3,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-2,-5,-3,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,2,5,3,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,2,5,3,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,5,-3,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,5,-3,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-5,3,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-5,3,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,2,-5,-3,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,2,-5,-3,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,5,3,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-2,5,3,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,5,-3,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,5,-3,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-5,3,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-5,3,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-2,-5,-3,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-2,-5,-3,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,3,1,2,5] => 00000 => [6] => ([],6) => 1
[4,3,1,2,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,1,-2,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,1,-2,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-1,2,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,3,-1,2,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,3,-1,-2,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-1,-2,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,1,2,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-3,1,2,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,1,-2,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,1,-2,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-1,2,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-1,2,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-1,-2,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-1,-2,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,3,1,2,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,3,1,2,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,1,-2,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,1,-2,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-1,2,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-1,2,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,3,-1,-2,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-1,-2,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,1,2,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-3,1,2,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,1,-2,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,1,-2,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-1,2,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-1,2,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-1,-2,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-1,-2,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,3,1,5,2] => 00000 => [6] => ([],6) => 1
[4,3,1,5,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,1,-5,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,1,-5,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-1,5,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,3,-1,5,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,3,-1,-5,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-1,-5,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,1,5,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-3,1,5,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,1,-5,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,1,-5,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-1,5,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-1,5,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-1,-5,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-1,-5,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,3,1,5,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,3,1,5,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,1,-5,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,1,-5,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-1,5,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-1,5,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,3,-1,-5,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-1,-5,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,1,5,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-3,1,5,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,1,-5,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,1,-5,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-1,5,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-1,5,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-1,-5,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-1,-5,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,3,2,1,5] => 00000 => [6] => ([],6) => 1
[4,3,2,1,-5] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,2,-1,5] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,2,-1,-5] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-2,1,5] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,3,-2,1,-5] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,3,-2,-1,5] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-2,-1,-5] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,2,1,5] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-3,2,1,-5] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,2,-1,5] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,2,-1,-5] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-2,1,5] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-2,1,-5] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-2,-1,5] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-2,-1,-5] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,3,2,1,5] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,3,2,1,-5] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,2,-1,5] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,2,-1,-5] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-2,1,5] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-2,1,-5] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,3,-2,-1,5] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-2,-1,-5] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,2,1,5] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-3,2,1,-5] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,2,-1,5] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,2,-1,-5] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-2,1,5] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-2,1,-5] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-2,-1,5] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-2,-1,-5] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,3,2,5,1] => 00000 => [6] => ([],6) => 1
[4,3,2,5,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,2,-5,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,2,-5,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-2,5,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,3,-2,5,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,3,-2,-5,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-2,-5,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,2,5,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-3,2,5,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,2,-5,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,2,-5,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-2,5,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-2,5,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-2,-5,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-2,-5,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,3,2,5,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,3,2,5,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,2,-5,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,2,-5,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-2,5,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-2,5,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,3,-2,-5,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-2,-5,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,2,5,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-3,2,5,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,2,-5,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,2,-5,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-2,5,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-2,5,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-2,-5,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-2,-5,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,3,5,1,2] => 00000 => [6] => ([],6) => 1
[4,3,5,1,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,5,-1,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,5,-1,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-5,1,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,3,-5,1,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,3,-5,-1,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-5,-1,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,5,1,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-3,5,1,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,5,-1,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,5,-1,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-5,1,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-5,1,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-5,-1,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-5,-1,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,3,5,1,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,3,5,1,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,5,-1,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,5,-1,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-5,1,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-5,1,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,3,-5,-1,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-5,-1,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,5,1,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-3,5,1,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,5,-1,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,5,-1,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-5,1,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-5,1,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-5,-1,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-5,-1,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,3,5,2,1] => 00000 => [6] => ([],6) => 1
[4,3,5,2,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,5,-2,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,3,5,-2,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-5,2,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,3,-5,2,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,3,-5,-2,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,3,-5,-2,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,5,2,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-3,5,2,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,5,-2,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,5,-2,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-5,2,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-5,2,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-3,-5,-2,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-3,-5,-2,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,3,5,2,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,3,5,2,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,5,-2,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,5,-2,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-5,2,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-5,2,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,3,-5,-2,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,3,-5,-2,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,5,2,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-3,5,2,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,5,-2,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,5,-2,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-5,2,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-5,2,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-3,-5,-2,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-3,-5,-2,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,5,1,2,3] => 00000 => [6] => ([],6) => 1
[4,5,1,2,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,1,-2,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,1,-2,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-1,2,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,5,-1,2,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,5,-1,-2,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-1,-2,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,1,2,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-5,1,2,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,1,-2,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,1,-2,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-1,2,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-1,2,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-1,-2,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-1,-2,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,5,1,2,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,5,1,2,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,1,-2,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,1,-2,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-1,2,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-1,2,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,5,-1,-2,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-1,-2,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,1,2,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-5,1,2,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,1,-2,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,1,-2,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-1,2,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-1,2,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-1,-2,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-1,-2,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,5,1,3,2] => 00000 => [6] => ([],6) => 1
[4,5,1,3,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,1,-3,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,1,-3,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-1,3,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,5,-1,3,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,5,-1,-3,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-1,-3,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,1,3,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-5,1,3,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,1,-3,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,1,-3,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-1,3,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-1,3,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-1,-3,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-1,-3,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,5,1,3,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,5,1,3,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,1,-3,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,1,-3,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-1,3,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-1,3,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,5,-1,-3,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-1,-3,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,1,3,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-5,1,3,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,1,-3,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,1,-3,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-1,3,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-1,3,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-1,-3,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-1,-3,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,5,2,1,3] => 00000 => [6] => ([],6) => 1
[4,5,2,1,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,2,-1,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,2,-1,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-2,1,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,5,-2,1,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,5,-2,-1,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-2,-1,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,2,1,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-5,2,1,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,2,-1,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,2,-1,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-2,1,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-2,1,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-2,-1,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-2,-1,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,5,2,1,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,5,2,1,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,2,-1,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,2,-1,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-2,1,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-2,1,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,5,-2,-1,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-2,-1,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,2,1,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-5,2,1,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,2,-1,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,2,-1,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-2,1,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-2,1,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-2,-1,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-2,-1,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,5,2,3,1] => 00000 => [6] => ([],6) => 1
[4,5,2,3,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,2,-3,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,2,-3,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-2,3,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,5,-2,3,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,5,-2,-3,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-2,-3,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,2,3,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-5,2,3,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,2,-3,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,2,-3,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-2,3,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-2,3,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-2,-3,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-2,-3,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,5,2,3,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,5,2,3,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,2,-3,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,2,-3,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-2,3,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-2,3,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,5,-2,-3,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-2,-3,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,2,3,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-5,2,3,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,2,-3,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,2,-3,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-2,3,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-2,3,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-2,-3,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-2,-3,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,5,3,1,2] => 00000 => [6] => ([],6) => 1
[4,5,3,1,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,3,-1,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,3,-1,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-3,1,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,5,-3,1,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,5,-3,-1,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-3,-1,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,3,1,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-5,3,1,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,3,-1,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,3,-1,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-3,1,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-3,1,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-3,-1,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-3,-1,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,5,3,1,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,5,3,1,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,3,-1,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,3,-1,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-3,1,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-3,1,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,5,-3,-1,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-3,-1,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,3,1,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-5,3,1,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,3,-1,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,3,-1,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-3,1,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-3,1,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-3,-1,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-3,-1,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,5,3,2,1] => 00000 => [6] => ([],6) => 1
[4,5,3,2,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,3,-2,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[4,5,3,-2,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-3,2,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[4,5,-3,2,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,5,-3,-2,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,5,-3,-2,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,3,2,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[4,-5,3,2,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,3,-2,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,3,-2,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-3,2,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-3,2,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[4,-5,-3,-2,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,-5,-3,-2,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-4,5,3,2,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-4,5,3,2,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,3,-2,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,3,-2,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-3,2,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-3,2,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-4,5,-3,-2,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,5,-3,-2,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,3,2,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-4,-5,3,2,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,3,-2,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,3,-2,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-3,2,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-3,2,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-4,-5,-3,-2,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-4,-5,-3,-2,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,1,2,3,4] => 00000 => [6] => ([],6) => 1
[5,1,2,3,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,2,-3,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,2,-3,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-2,3,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,1,-2,3,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,1,-2,-3,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-2,-3,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,2,3,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-1,2,3,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,2,-3,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,2,-3,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-2,3,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-2,3,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-2,-3,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-2,-3,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,1,2,3,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,1,2,3,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,2,-3,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,2,-3,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-2,3,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-2,3,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,1,-2,-3,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-2,-3,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,2,3,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-1,2,3,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,2,-3,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,2,-3,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-2,3,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-2,3,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-2,-3,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-2,-3,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,1,2,4,3] => 00000 => [6] => ([],6) => 1
[5,1,2,4,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,2,-4,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,2,-4,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-2,4,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,1,-2,4,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,1,-2,-4,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-2,-4,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,2,4,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-1,2,4,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,2,-4,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,2,-4,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-2,4,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-2,4,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-2,-4,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-2,-4,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,1,2,4,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,1,2,4,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,2,-4,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,2,-4,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-2,4,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-2,4,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,1,-2,-4,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-2,-4,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,2,4,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-1,2,4,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,2,-4,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,2,-4,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-2,4,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-2,4,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-2,-4,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-2,-4,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,1,3,2,4] => 00000 => [6] => ([],6) => 1
[5,1,3,2,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,3,-2,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,3,-2,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-3,2,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,1,-3,2,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,1,-3,-2,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-3,-2,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,3,2,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-1,3,2,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,3,-2,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,3,-2,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-3,2,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-3,2,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-3,-2,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-3,-2,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,1,3,2,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,1,3,2,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,3,-2,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,3,-2,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-3,2,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-3,2,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,1,-3,-2,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-3,-2,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,3,2,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-1,3,2,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,3,-2,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,3,-2,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-3,2,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-3,2,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-3,-2,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-3,-2,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,1,3,4,2] => 00000 => [6] => ([],6) => 1
[5,1,3,4,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,3,-4,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,3,-4,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-3,4,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,1,-3,4,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,1,-3,-4,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-3,-4,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,3,4,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-1,3,4,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,3,-4,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,3,-4,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-3,4,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-3,4,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-3,-4,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-3,-4,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,1,3,4,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,1,3,4,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,3,-4,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,3,-4,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-3,4,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-3,4,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,1,-3,-4,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-3,-4,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,3,4,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-1,3,4,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,3,-4,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,3,-4,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-3,4,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-3,4,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-3,-4,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-3,-4,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,1,4,2,3] => 00000 => [6] => ([],6) => 1
[5,1,4,2,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,4,-2,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,4,-2,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-4,2,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,1,-4,2,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,1,-4,-2,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-4,-2,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,4,2,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-1,4,2,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,4,-2,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,4,-2,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-4,2,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-4,2,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-4,-2,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-4,-2,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,1,4,2,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,1,4,2,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,4,-2,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,4,-2,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-4,2,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-4,2,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,1,-4,-2,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-4,-2,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,4,2,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-1,4,2,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,4,-2,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,4,-2,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-4,2,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-4,2,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-4,-2,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-4,-2,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,1,4,3,2] => 00000 => [6] => ([],6) => 1
[5,1,4,3,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,4,-3,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,1,4,-3,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-4,3,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,1,-4,3,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,1,-4,-3,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,1,-4,-3,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,4,3,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-1,4,3,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,4,-3,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,4,-3,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-4,3,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-4,3,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-1,-4,-3,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-1,-4,-3,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,1,4,3,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,1,4,3,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,4,-3,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,4,-3,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-4,3,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-4,3,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,1,-4,-3,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,1,-4,-3,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,4,3,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-1,4,3,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,4,-3,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,4,-3,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-4,3,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-4,3,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-1,-4,-3,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-1,-4,-3,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,2,1,3,4] => 00000 => [6] => ([],6) => 1
[5,2,1,3,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,1,-3,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,1,-3,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-1,3,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,2,-1,3,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,2,-1,-3,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-1,-3,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,1,3,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-2,1,3,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,1,-3,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,1,-3,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-1,3,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-1,3,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-1,-3,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-1,-3,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,2,1,3,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,2,1,3,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,1,-3,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,1,-3,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-1,3,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-1,3,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,2,-1,-3,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-1,-3,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,1,3,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-2,1,3,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,1,-3,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,1,-3,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-1,3,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-1,3,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-1,-3,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-1,-3,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,2,1,4,3] => 00000 => [6] => ([],6) => 1
[5,2,1,4,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,1,-4,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,1,-4,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-1,4,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,2,-1,4,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,2,-1,-4,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-1,-4,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,1,4,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-2,1,4,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,1,-4,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,1,-4,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-1,4,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-1,4,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-1,-4,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-1,-4,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,2,1,4,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,2,1,4,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,1,-4,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,1,-4,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-1,4,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-1,4,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,2,-1,-4,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-1,-4,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,1,4,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-2,1,4,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,1,-4,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,1,-4,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-1,4,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-1,4,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-1,-4,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-1,-4,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,2,3,1,4] => 00000 => [6] => ([],6) => 1
[5,2,3,1,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,3,-1,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,3,-1,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-3,1,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,2,-3,1,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,2,-3,-1,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-3,-1,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,3,1,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-2,3,1,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,3,-1,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,3,-1,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-3,1,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-3,1,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-3,-1,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-3,-1,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,2,3,1,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,2,3,1,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,3,-1,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,3,-1,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-3,1,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-3,1,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,2,-3,-1,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-3,-1,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,3,1,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-2,3,1,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,3,-1,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,3,-1,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-3,1,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-3,1,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-3,-1,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-3,-1,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,2,3,4,1] => 00000 => [6] => ([],6) => 1
[5,2,3,4,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,3,-4,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,3,-4,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-3,4,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,2,-3,4,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,2,-3,-4,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-3,-4,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,3,4,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-2,3,4,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,3,-4,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,3,-4,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-3,4,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-3,4,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-3,-4,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-3,-4,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,2,3,4,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,2,3,4,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,3,-4,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,3,-4,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-3,4,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-3,4,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,2,-3,-4,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-3,-4,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,3,4,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-2,3,4,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,3,-4,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,3,-4,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-3,4,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-3,4,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-3,-4,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-3,-4,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,2,4,1,3] => 00000 => [6] => ([],6) => 1
[5,2,4,1,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,4,-1,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,4,-1,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-4,1,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,2,-4,1,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,2,-4,-1,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-4,-1,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,4,1,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-2,4,1,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,4,-1,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,4,-1,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-4,1,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-4,1,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-4,-1,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-4,-1,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,2,4,1,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,2,4,1,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,4,-1,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,4,-1,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-4,1,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-4,1,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,2,-4,-1,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-4,-1,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,4,1,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-2,4,1,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,4,-1,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,4,-1,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-4,1,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-4,1,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-4,-1,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-4,-1,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,2,4,3,1] => 00000 => [6] => ([],6) => 1
[5,2,4,3,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,4,-3,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,2,4,-3,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-4,3,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,2,-4,3,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,2,-4,-3,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,2,-4,-3,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,4,3,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-2,4,3,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,4,-3,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,4,-3,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-4,3,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-4,3,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-2,-4,-3,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-2,-4,-3,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,2,4,3,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,2,4,3,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,4,-3,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,4,-3,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-4,3,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-4,3,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,2,-4,-3,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,2,-4,-3,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,4,3,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-2,4,3,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,4,-3,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,4,-3,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-4,3,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-4,3,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-2,-4,-3,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-2,-4,-3,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,3,1,2,4] => 00000 => [6] => ([],6) => 1
[5,3,1,2,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,1,-2,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,1,-2,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-1,2,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,3,-1,2,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,3,-1,-2,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-1,-2,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,1,2,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-3,1,2,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,1,-2,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,1,-2,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-1,2,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-1,2,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-1,-2,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-1,-2,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,3,1,2,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,3,1,2,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,1,-2,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,1,-2,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-1,2,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-1,2,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,3,-1,-2,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-1,-2,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,1,2,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-3,1,2,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,1,-2,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,1,-2,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-1,2,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-1,2,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-1,-2,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-1,-2,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,3,1,4,2] => 00000 => [6] => ([],6) => 1
[5,3,1,4,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,1,-4,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,1,-4,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-1,4,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,3,-1,4,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,3,-1,-4,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-1,-4,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,1,4,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-3,1,4,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,1,-4,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,1,-4,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-1,4,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-1,4,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-1,-4,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-1,-4,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,3,1,4,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,3,1,4,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,1,-4,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,1,-4,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-1,4,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-1,4,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,3,-1,-4,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-1,-4,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,1,4,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-3,1,4,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,1,-4,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,1,-4,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-1,4,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-1,4,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-1,-4,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-1,-4,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,3,2,1,4] => 00000 => [6] => ([],6) => 1
[5,3,2,1,-4] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,2,-1,4] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,2,-1,-4] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-2,1,4] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,3,-2,1,-4] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,3,-2,-1,4] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-2,-1,-4] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,2,1,4] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-3,2,1,-4] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,2,-1,4] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,2,-1,-4] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-2,1,4] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-2,1,-4] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-2,-1,4] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-2,-1,-4] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,3,2,1,4] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,3,2,1,-4] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,2,-1,4] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,2,-1,-4] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-2,1,4] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-2,1,-4] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,3,-2,-1,4] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-2,-1,-4] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,2,1,4] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-3,2,1,-4] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,2,-1,4] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,2,-1,-4] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-2,1,4] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-2,1,-4] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-2,-1,4] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-2,-1,-4] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,3,2,4,1] => 00000 => [6] => ([],6) => 1
[5,3,2,4,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,2,-4,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,2,-4,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-2,4,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,3,-2,4,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,3,-2,-4,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-2,-4,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,2,4,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-3,2,4,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,2,-4,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,2,-4,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-2,4,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-2,4,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-2,-4,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-2,-4,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,3,2,4,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,3,2,4,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,2,-4,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,2,-4,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-2,4,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-2,4,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,3,-2,-4,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-2,-4,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,2,4,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-3,2,4,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,2,-4,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,2,-4,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-2,4,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-2,4,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-2,-4,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-2,-4,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,3,4,1,2] => 00000 => [6] => ([],6) => 1
[5,3,4,1,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,4,-1,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,4,-1,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-4,1,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,3,-4,1,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,3,-4,-1,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-4,-1,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,4,1,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-3,4,1,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,4,-1,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,4,-1,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-4,1,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-4,1,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-4,-1,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-4,-1,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,3,4,1,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,3,4,1,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,4,-1,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,4,-1,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-4,1,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-4,1,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,3,-4,-1,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-4,-1,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,4,1,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-3,4,1,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,4,-1,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,4,-1,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-4,1,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-4,1,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-4,-1,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-4,-1,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,3,4,2,1] => 00000 => [6] => ([],6) => 1
[5,3,4,2,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,4,-2,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,3,4,-2,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-4,2,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,3,-4,2,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,3,-4,-2,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,3,-4,-2,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,4,2,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-3,4,2,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,4,-2,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,4,-2,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-4,2,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-4,2,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-3,-4,-2,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-3,-4,-2,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,3,4,2,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,3,4,2,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,4,-2,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,4,-2,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-4,2,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-4,2,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,3,-4,-2,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,3,-4,-2,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,4,2,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-3,4,2,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,4,-2,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,4,-2,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-4,2,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-4,2,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-3,-4,-2,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-3,-4,-2,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,4,1,2,3] => 00000 => [6] => ([],6) => 1
[5,4,1,2,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,1,-2,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,1,-2,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-1,2,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,4,-1,2,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,4,-1,-2,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-1,-2,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,1,2,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-4,1,2,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,1,-2,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,1,-2,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-1,2,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-1,2,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-1,-2,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-1,-2,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,4,1,2,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,4,1,2,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,1,-2,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,1,-2,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-1,2,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-1,2,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,-1,-2,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-1,-2,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,1,2,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-4,1,2,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,1,-2,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,1,-2,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-1,2,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-1,2,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-1,-2,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-1,-2,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,4,1,3,2] => 00000 => [6] => ([],6) => 1
[5,4,1,3,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,1,-3,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,1,-3,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-1,3,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,4,-1,3,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,4,-1,-3,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-1,-3,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,1,3,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-4,1,3,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,1,-3,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,1,-3,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-1,3,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-1,3,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-1,-3,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-1,-3,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,4,1,3,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,4,1,3,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,1,-3,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,1,-3,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-1,3,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-1,3,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,-1,-3,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-1,-3,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,1,3,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-4,1,3,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,1,-3,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,1,-3,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-1,3,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-1,3,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-1,-3,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-1,-3,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,4,2,1,3] => 00000 => [6] => ([],6) => 1
[5,4,2,1,-3] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,2,-1,3] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,2,-1,-3] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-2,1,3] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,4,-2,1,-3] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,4,-2,-1,3] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-2,-1,-3] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,2,1,3] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-4,2,1,-3] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,2,-1,3] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,2,-1,-3] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-2,1,3] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-2,1,-3] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-2,-1,3] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-2,-1,-3] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,4,2,1,3] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,4,2,1,-3] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,2,-1,3] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,2,-1,-3] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-2,1,3] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-2,1,-3] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,-2,-1,3] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-2,-1,-3] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,2,1,3] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-4,2,1,-3] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,2,-1,3] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,2,-1,-3] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-2,1,3] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-2,1,-3] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-2,-1,3] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-2,-1,-3] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,4,2,3,1] => 00000 => [6] => ([],6) => 1
[5,4,2,3,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,2,-3,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,2,-3,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-2,3,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,4,-2,3,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,4,-2,-3,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-2,-3,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,2,3,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-4,2,3,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,2,-3,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,2,-3,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-2,3,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-2,3,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-2,-3,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-2,-3,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,4,2,3,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,4,2,3,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,2,-3,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,2,-3,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-2,3,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-2,3,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,-2,-3,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-2,-3,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,2,3,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-4,2,3,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,2,-3,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,2,-3,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-2,3,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-2,3,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-2,-3,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-2,-3,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,4,3,1,2] => 00000 => [6] => ([],6) => 1
[5,4,3,1,-2] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,3,-1,2] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,3,-1,-2] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-3,1,2] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,4,-3,1,-2] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,4,-3,-1,2] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-3,-1,-2] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,3,1,2] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-4,3,1,-2] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,3,-1,2] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,3,-1,-2] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-3,1,2] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-3,1,-2] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-3,-1,2] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-3,-1,-2] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,4,3,1,2] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,4,3,1,-2] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,3,-1,2] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,3,-1,-2] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-3,1,2] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-3,1,-2] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,-3,-1,2] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-3,-1,-2] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,3,1,2] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-4,3,1,-2] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,3,-1,2] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,3,-1,-2] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-3,1,2] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-3,1,-2] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-3,-1,2] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-3,-1,-2] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,4,3,2,1] => 00000 => [6] => ([],6) => 1
[5,4,3,2,-1] => 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,3,-2,1] => 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
[5,4,3,-2,-1] => 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-3,2,1] => 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[5,4,-3,2,-1] => 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,4,-3,-2,1] => 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,4,-3,-2,-1] => 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,3,2,1] => 01000 => [2,4] => ([(3,5),(4,5)],6) => 3
[5,-4,3,2,-1] => 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,3,-2,1] => 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,3,-2,-1] => 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-3,2,1] => 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-3,2,-1] => 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[5,-4,-3,-2,1] => 01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[5,-4,-3,-2,-1] => 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-5,4,3,2,1] => 10000 => [1,5] => ([(4,5)],6) => 2
[-5,4,3,2,-1] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,3,-2,1] => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,3,-2,-1] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-3,2,1] => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-3,2,-1] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,-3,-2,1] => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,4,-3,-2,-1] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,3,2,1] => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[-5,-4,3,2,-1] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,3,-2,1] => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,3,-2,-1] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-3,2,1] => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-3,2,-1] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[-5,-4,-3,-2,1] => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-5,-4,-3,-2,-1] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,3,4,5,6] => 000000 => [7] => ([],7) => 1
[1,2,3,6,4,5] => 000000 => [7] => ([],7) => 1
[1,2,5,3,4,6] => 000000 => [7] => ([],7) => 1
[1,2,5,6,3,4] => 000000 => [7] => ([],7) => 1
[1,4,2,3,5,6] => 000000 => [7] => ([],7) => 1
[1,4,2,6,3,5] => 000000 => [7] => ([],7) => 1
[1,4,5,2,3,6] => 000000 => [7] => ([],7) => 1
[1,4,5,6,2,3] => 000000 => [7] => ([],7) => 1
[1,5,2,3,4,6] => 000000 => [7] => ([],7) => 1
[1,5,6,2,3,4] => 000000 => [7] => ([],7) => 1
[1,6,2,3,4,5] => 000000 => [7] => ([],7) => 1
[1,6,2,5,3,4] => 000000 => [7] => ([],7) => 1
[1,6,4,2,3,5] => 000000 => [7] => ([],7) => 1
[1,6,4,5,2,3] => 000000 => [7] => ([],7) => 1
[3,1,2,4,5,6] => 000000 => [7] => ([],7) => 1
[3,1,2,6,4,5] => 000000 => [7] => ([],7) => 1
[3,1,5,2,4,6] => 000000 => [7] => ([],7) => 1
[3,1,5,6,2,4] => 000000 => [7] => ([],7) => 1
[3,4,1,2,5,6] => 000000 => [7] => ([],7) => 1
[3,4,1,6,2,5] => 000000 => [7] => ([],7) => 1
[3,4,5,1,2,6] => 000000 => [7] => ([],7) => 1
[3,4,5,6,1,2] => 000000 => [7] => ([],7) => 1
[3,4,6,1,2,5] => 000000 => [7] => ([],7) => 1
[3,5,1,2,4,6] => 000000 => [7] => ([],7) => 1
[3,5,6,1,2,4] => 000000 => [7] => ([],7) => 1
[3,6,1,2,4,5] => 000000 => [7] => ([],7) => 1
[3,6,1,5,2,4] => 000000 => [7] => ([],7) => 1
[3,6,4,1,2,5] => 000000 => [7] => ([],7) => 1
[3,6,4,5,1,2] => 000000 => [7] => ([],7) => 1
[4,1,2,3,5,6] => 000000 => [7] => ([],7) => 1
[4,5,1,2,3,6] => 000000 => [7] => ([],7) => 1
[4,5,6,1,2,3] => 000000 => [7] => ([],7) => 1
[4,6,1,2,3,5] => 000000 => [7] => ([],7) => 1
[4,6,5,1,2,3] => 000000 => [7] => ([],7) => 1
[5,1,2,3,4,6] => 000000 => [7] => ([],7) => 1
[5,1,2,6,3,4] => 000000 => [7] => ([],7) => 1
[5,1,4,2,3,6] => 000000 => [7] => ([],7) => 1
[5,1,4,6,2,3] => 000000 => [7] => ([],7) => 1
[5,1,6,2,3,4] => 000000 => [7] => ([],7) => 1
[5,3,1,2,4,6] => 000000 => [7] => ([],7) => 1
[5,3,1,6,2,4] => 000000 => [7] => ([],7) => 1
[5,3,4,1,2,6] => 000000 => [7] => ([],7) => 1
[5,3,4,6,1,2] => 000000 => [7] => ([],7) => 1
[5,6,1,2,3,4] => 000000 => [7] => ([],7) => 1
[5,6,1,4,2,3] => 000000 => [7] => ([],7) => 1
[5,6,3,1,2,4] => 000000 => [7] => ([],7) => 1
[5,6,3,4,1,2] => 000000 => [7] => ([],7) => 1
[6,1,2,3,4,5] => 000000 => [7] => ([],7) => 1
[6,2,1,5,3,4] => 000000 => [7] => ([],7) => 1
[6,2,4,1,3,5] => 000000 => [7] => ([],7) => 1
[6,3,1,2,4,5] => 000000 => [7] => ([],7) => 1
[-6,-4,-2,1,3,5] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[4,6,-3,1,2,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-3,2,-6,-4,1,5] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,2,6,-5,1,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-5,-3,2,4,-6,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,5,2,3,-6,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-6,-4,-5,1,3] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-6,-5,1,-4,2,3] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,3,6,1,2,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[2,6,-5,1,3,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-5,4,-6,-2,1,3] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,-5,-6,-3,1,2] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,6,5,-4,1,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,6,-5,3,1,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-4,3,-5,2,-6,1] => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[6,2,3,4,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,3,4,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,3,6,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,3,6,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,3,5,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,6,4,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,5,4,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,6,3,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,6,3,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,5,3,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,4,6,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,5,6,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,5,6,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,4,5,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,6,3,4,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,5,3,4,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,3,6,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,5,3,6,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,3,5,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,6,2,4,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,5,2,4,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,6,2,3,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,2,3,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,2,3,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,2,6,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,5,2,6,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,2,6,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,2,5,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,6,4,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,5,4,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,6,3,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,5,6,3,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,5,3,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,6,2,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,5,6,2,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,6,2,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,5,2,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,4,6,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,5,6,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,5,6,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,5,6,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,4,5,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-6,-4,1,3,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,-6,-2,1,3,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,6,-4,1,3,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-4,2,-6,1,3,5] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,-2,1,3,5,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[2,-4,1,3,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-5,-4,-2,1,3,6] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[2,-5,-4,1,3,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,5,-4,1,3,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-6,-5,-4,-2,1,3] => 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[2,-6,-5,-4,1,3] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,6,-5,-4,1,3] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,5,6,-4,1,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-6,-5,1,3,4] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-2,-6,-5,1,3,4] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-6,2,-5,1,3,4] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[6,2,-5,1,3,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,-5,1,3,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-2,-5,1,3,4,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-5,-2,1,3,4,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-5,-3,-2,1,4,6] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[3,-5,-2,1,4,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-6,-5,-2,1,3,4] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-6,-5,-3,-2,1,4] => 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[3,-6,-5,-2,1,4] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,6,-5,-2,1,4] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-2,-6,1,3,4,5] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-6,2,1,3,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[2,-6,1,3,4,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[3,-6,-2,1,4,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,3,-6,1,4,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-6,-2,1,3,4,5] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-6,-3,-2,1,4,5] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-6,-4,-3,-2,1,5] => 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[4,-6,-3,-2,1,5] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-2,1,3,4,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-3,-2,1,4,5,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-4,-3,-2,1,5,6] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-5,-4,-3,-2,1,6] => 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-6,-5,-4,-3,-2,1] => 111110 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[6,-4,-3,1,2,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-4,-6,-3,1,2,5] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-6,3,4,1,2,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[4,-3,1,2,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,-4,-3,1,2,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,5,-3,1,2,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,-5,-4,-3,1,2] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,6,-4,-3,1,2] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,5,6,-3,1,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,-3,1,2,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-3,6,-5,1,2,4] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,-5,3,1,2,4] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-5,3,1,2,4,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[5,-3,1,2,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-5,-3,1,2,4,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[3,-5,1,2,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-5,-3,1,2,4] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-6,-5,-3,1,2,4] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[3,-6,-5,1,2,4] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,6,-5,1,2,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-6,3,1,2,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[3,-6,1,2,4,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-3,-6,1,2,4,5] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[6,-3,1,2,4,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-6,-3,1,2,4,5] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-6,-4,-3,1,2,5] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[4,-6,-3,1,2,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-3,1,2,4,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-4,-3,1,2,5,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-5,-4,-3,1,2,6] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-6,-5,-4,-3,1,2] => 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-5,6,-4,1,2,3] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,1,-5,-4,2,3] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,5,6,1,2,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-5,-4,6,1,2,3] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-4,5,1,2,3,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-5,1,-4,2,3,6] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,-5,-4,2,3,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,-4,1,2,3,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[1,-6,-5,-4,2,3] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[6,-5,-4,1,2,3] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,6,-4,1,2,3] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-6,1,-4,2,3,5] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,1,-6,2,3,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-4,6,1,2,3,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-6,4,1,2,3,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[1,-6,-4,2,3,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[6,-4,1,2,3,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-6,-4,1,2,3,5] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[4,-6,1,2,3,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[1,-4,2,3,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-4,1,2,3,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-5,-4,1,2,3,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-6,-5,-4,1,2,3] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[6,1,-5,2,3,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-5,6,1,2,3,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[-6,1,-5,2,3,4] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,6,-5,2,3,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[1,-6,-5,2,3,4] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[6,-5,1,2,3,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[1,-5,2,3,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-5,1,2,3,4,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-6,-5,1,2,3,4] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[1,2,-6,3,4,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[1,-6,2,3,4,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-6,1,2,3,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[2,-3,1,4,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-2,-4,1,3,5,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-4,3,1,2,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-5,2,1,3,4,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[4,1,-5,2,3,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-2,1,-6,3,4,5] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,1,-6,2,4,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[1,-4,-6,2,3,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,-6,5,2,3,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,5,-3,1,4,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-5,2,-4,1,3,6] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,3,5,1,2,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[4,2,-5,1,3,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-3,2,-6,1,4,5] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[6,2,-4,1,3,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-6,-4,3,1,2,5] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[6,-2,-5,1,3,4] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[6,-5,3,1,2,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-4,1,-5,2,3] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-6,4,1,2,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-2,-5,-6,1,3,4] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-5,-6,3,1,2,4] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[4,5,1,-6,2,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-3,2,-4,1,5,6] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,2,-5,1,4,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,-4,-5,1,3,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,-5,3,1,2,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-3,-6,1,4,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-2,-4,-6,1,3,5] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-4,-6,3,1,2,5] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-5,-6,2,1,3,4] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-6,5,3,1,2,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[-5,4,1,-6,2,3] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,-3,2,-6,1,4] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,-6,2,-4,1,3] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,-6,3,5,1,2] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-4,-6,2,-5,1,3] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-3,2,6,-4,1,5] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[6,-4,2,-5,1,3] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,-5,3,6,1,2] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,-3,2,-6,1,4] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,5,2,-6,1,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-4,-6,3,5,1,2] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-5,4,2,-6,1,3] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,5,3,4,1,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[3,-4,2,-5,1,6] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-3,-4,2,-6,1,5] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,3,2,-6,1,4] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,2,-5,-6,1,3] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,4,-6,3,1,2] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,3,4,5,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,4,-1,5,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,4,-1,6,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,5,4,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,-1,4,5,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,3,-1,4,6,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,3,6,5,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,-1,5,4,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,3,-1,6,4,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,3,-1,6,5,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,4,3,5,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,3,-1,5,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,3,-1,6,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,5,3,4,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-1,3,4,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,3,4,6,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,6,3,5,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-1,3,5,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,3,6,4,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,3,6,5,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,5,4,3,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,5,4,3,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,6,4,3,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-1,4,3,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,4,3,6,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,6,5,3,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-1,5,3,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,6,3,4,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,6,3,5,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,6,5,4,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-1,5,4,3,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,6,4,3,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,6,5,3,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,6,5,4,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[3,2,4,5,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,4,-1,5,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,4,-1,6,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,5,4,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,-1,4,5,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,2,-1,4,6,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,2,6,5,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,-1,5,4,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,2,-1,6,4,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,2,-1,6,5,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[4,2,3,5,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,3,-1,5,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,3,-1,6,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,3,4,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,2,3,4,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,3,4,6,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,2,3,5,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,2,3,5,4,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,3,6,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,3,6,5,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[5,2,4,3,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,4,3,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,2,4,3,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,2,4,3,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,4,3,6,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,2,5,3,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,2,5,3,4,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,6,3,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,6,3,5,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,2,5,4,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,2,5,4,3,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,6,4,3,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,6,5,3,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,6,5,4,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[4,3,2,5,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,3,2,5,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,3,2,6,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,3,2,-1,5,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,3,2,-1,6,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,2,4,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,2,4,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,3,2,4,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,3,2,4,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,2,4,6,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,3,2,5,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,3,2,5,4,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,2,6,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,2,6,5,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[5,4,2,3,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,4,2,3,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,2,3,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,4,2,3,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,4,2,3,6,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,5,2,3,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,5,2,3,4,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,2,3,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,2,3,5,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,5,2,4,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,5,2,4,3,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,2,4,3,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,2,5,3,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,2,5,4,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[5,4,3,2,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,4,3,2,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,3,2,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,4,3,2,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,4,3,2,6,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,5,3,2,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,5,3,2,4,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,3,2,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,3,2,5,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,5,4,2,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,5,4,2,3,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,4,2,3,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,5,2,3,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,5,2,4,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,5,4,3,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,5,4,3,2,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,4,3,2,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,5,3,2,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,5,4,2,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,5,4,3,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[3,4,5,6,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,5,-1,2,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,6,2,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,6,-1,5,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,-1,2,5,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,5,2,6,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,5,2,-1,4,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,5,6,4,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,5,6,-1,4,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,5,-1,4,2,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,6,2,4,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,6,2,-1,5,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,6,-1,4,5,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,-1,2,4,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[4,2,5,6,-1,3] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,5,-1,3,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,6,3,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,6,-1,5,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,-1,3,5,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[4,5,3,6,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,3,-1,2,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,6,3,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,6,-1,2,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,-1,3,2,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[4,6,3,2,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,6,3,-1,5,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,6,-1,3,5,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[4,-1,3,2,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,2,3,6,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,3,-1,4,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,6,4,-1,3] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,6,-1,4,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,-1,4,3,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[5,6,3,4,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,3,-1,4,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,-1,4,3,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[5,-1,3,4,2,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,2,3,4,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,2,3,-1,5,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,2,-1,4,5,3] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,-1,3,4,5,2] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-2,-3,-4,-5,-6,1] => 111110 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[2,-3,-4,-6,-5,1] => 011110 => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,2,-5,-4,-6,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-3,2,-6,-4,-5,1] => 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,2,-6,-5,-4,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-3,4,2,-5,-6,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,4,2,-6,-5,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,-3,2,-6,-4,1] => 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,5,2,-6,-3,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-6,-3,2,-4,-5,1] => 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[6,-3,2,-5,-4,1] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,6,2,-3,-5,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,6,2,-3,-4,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,6,2,-4,-3,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-4,-5,2,3,-6,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,-6,2,3,-5,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-4,6,2,3,-5,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,6,2,3,-4,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-2,-5,-6,4,-3,1] => 111010 => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-3,-6,2,4,-5,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,5,3,4,-6,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,3,4,-2,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-2,-3,-6,5,-4,1] => 111010 => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,-3,2,5,-6,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,2,3,5,-6,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-6,4,5,-3,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,6,4,5,-2,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-2,-3,-4,6,-5,1] => 111010 => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,-3,-5,6,-4,1] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,2,-3,6,-5,1] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-5,2,-3,6,-4,1] => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[5,2,-4,6,-3,1] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-4,2,3,6,-5,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,2,3,6,-4,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-2,-5,4,6,-3,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,3,4,6,-2,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-2,-3,5,6,-4,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,-4,5,6,-3,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[2,3,5,6,-4,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-2,4,5,6,-3,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,4,5,6,-2,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-4,-5,-6,3,1,2] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[4,-6,-5,3,1,2] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,5,-6,3,1,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-4,6,-5,3,1,2] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,6,-4,3,1,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-6,-4,3,5,1,2] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-4,-5,3,6,1,2] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[5,-4,3,6,1,2] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-4,3,5,6,1,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-4,-5,-6,-2,1,3] => 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-4,-6,-5,2,1,3] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[2,-4,-6,5,1,3] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[6,-4,-5,2,1,3] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,-5,-4,6,1,3] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-6,5,1,4,2,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,-5,-6,-3,1,4] => 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[2,-6,-5,-3,1,4] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,2,-6,3,1,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,6,-5,3,1,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-6,5,-2,1,3,4] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,6,2,1,3,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,-3,-6,-4,1,5] => 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[4,2,-6,-3,1,5] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-4,2,-6,3,1,5] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,-2,4,-3,1,5] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,6,4,-2,1,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-6,-2,-3,1,4,5] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-6,2,3,1,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,6,1,3,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,-3,-4,-5,1,6] => 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[2,-3,-5,-4,1,6] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,2,-3,-5,1,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,2,-3,-4,1,6] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,2,-4,-3,1,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-4,2,3,-5,1,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,2,3,-4,1,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-2,-5,4,-3,1,6] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,3,4,-2,1,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-2,-3,5,-4,1,6] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,-4,5,-3,1,6] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[2,3,5,-4,1,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-2,4,5,-3,1,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,4,5,-2,1,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-4,-5,3,1,2,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[5,-4,3,1,2,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-4,-5,-2,1,3,6] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-5,-4,2,1,3,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-2,-5,-3,1,4,6] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[2,-5,3,1,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,-2,1,3,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-2,-3,-4,1,5,6] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[2,-4,-3,1,5,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,3,-4,1,5,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-2,4,-3,1,5,6] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,4,-2,1,5,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-2,-3,1,4,5,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[3,-2,1,4,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,-6,1,2,3,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,-6,-4,1,2,3] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,-5,1,2,3,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[4,-6,-5,1,2,3] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,6,-5,1,2,3] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-5,4,-6,1,2,3] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,-6,-3,1,2,4] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,-6,-4,-3,1,2] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,-5,-3,1,2,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,-6,-5,-3,1,2] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,6,-5,-3,1,2] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,4,-6,-3,1,2] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,-4,1,2,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[3,-6,-4,1,2,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,-5,-4,1,2,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,-6,-5,-4,1,2] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,5,-6,-4,1,2] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,5,-4,1,2,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,6,-5,-4,1,2] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,5,6,-4,1,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-6,3,5,-4,1,2] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,3,-5,1,2,6] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,3,-6,-5,1,2] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,3,6,-5,1,2] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,-4,3,-5,1,2] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,-5,3,-6,1,2] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[5,-6,-2,1,3,4] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,-6,-4,-2,1,3] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,-5,-2,1,3,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,-6,-5,-2,1,3] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,6,-5,-2,1,3] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,-6,-3,-2,1,4] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,-6,-4,-3,-2,1] => 011110 => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,-5,-3,-2,1,6] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,-6,-5,-3,-2,1] => 011110 => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,6,-5,-3,-2,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,4,-6,-3,-2,1] => 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,-4,-2,1,5,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,-6,-4,-2,1,5] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,-5,-4,-2,1,6] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,-6,-5,-4,-2,1] => 011110 => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,5,-6,-4,-2,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,5,-4,-2,1,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,6,-5,-4,-2,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,5,6,-4,-2,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-6,3,5,-4,-2,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,3,-5,-2,1,6] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,3,-6,-5,-2,1] => 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,3,6,-5,-2,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,-4,3,-5,-2,1] => 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,-5,3,-6,-2,1] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[2,-6,-3,1,4,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,-5,-3,1,4,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,5,-6,-3,1,4] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,-6,-4,-3,1,5] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,-5,-4,-3,1,6] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,-6,-5,-4,-3,1] => 011110 => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,5,-6,-4,-3,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,4,-5,-3,1,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,4,-6,-5,-3,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,4,6,-5,-3,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,2,4,-6,-3,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,4,-3,1,5,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,6,-4,-3,1,5] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,5,-4,-3,1,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,6,-5,-4,-3,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,2,-6,-4,-3,1] => 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,4,5,-3,1,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,5,6,-4,-3,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,4,5,6,-3,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-6,2,4,5,-3,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,2,4,-3,1,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,2,6,-5,-3,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,2,4,6,-3,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,-5,2,4,-3,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,-6,2,4,-3,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-3,2,-5,-4,1,6] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-3,2,-6,-5,-4,1] => 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-3,2,5,-6,-4,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-3,2,5,-4,1,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-3,2,6,-5,-4,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-3,2,5,6,-4,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,-3,2,5,-4,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,-3,2,-4,1,6] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,-3,2,-5,-4,1] => 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,-3,2,6,-4,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,-5,-3,2,-4,1] => 111010 => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,-6,-3,2,-4,1] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-4,2,-6,-5,1] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-4,2,6,-5,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-6,-4,2,-5,1] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,6,-4,2,-5,1] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-6,1,5,2,3,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[-6,1,4,2,3,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[1,-5,-6,2,3,4] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-6,-4,-5,1,2,3] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-6,3,5,1,2,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[4,-6,5,1,2,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,2,-6,1,3,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-6,-3,-5,1,2,4] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[4,1,-6,-5,2,3] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-4,3,6,1,2,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[3,-6,5,1,2,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-3,6,-5,-4,1,2] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,2,-6,1,3,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,-5,-6,1,3,4] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-4,2,-6,-5,1,3] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,-3,6,-5,1,2] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,3,-6,-2,1,4] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,-4,2,-6,1,3] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,-6,4,5,1,2] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,6,-1,2,3,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-2,1,-4,3,-6,5] => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[-2,4,1,3,-6,5] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,1,-4,6,3,5] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,6,1,-4,3,5] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,4,1,6,3,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,1,-4,3,5,6] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,4,1,3,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,1,5,-4,3,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,-2,1,-4,3,6] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-2,4,5,1,3,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,1,5,6,-4,3] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,-2,1,6,-4,3] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[5,6,-2,1,-4,3] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-2,4,5,6,1,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,1,-6,3,-5,4] => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[-2,6,1,3,-5,4] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,-5,1,6,3,4] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-2,6,-5,1,3,4] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,1,5,6,3,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,1,5,3,4,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,1,3,-5,4,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,-2,1,-5,4,6] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-2,5,1,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-2,1,3,6,-5,4] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,-2,1,6,-5,4] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,6,-2,1,-5,4] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-2,5,6,1,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-2,1,3,6,4,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[3,-2,-6,1,4,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,-2,1,6,4,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-2,1,3,4,-6,5] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,-2,1,4,-6,5] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,4,-2,1,-6,5] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,4,-2,6,1,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-4,1,-3,2,-6,5] => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[3,4,1,2,-6,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-4,1,-3,6,2,5] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,6,1,-3,2,5] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,1,-3,2,5,6] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,1,5,-3,2,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,-4,1,-3,2,6] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-4,1,5,6,-3,2] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,-4,1,6,-3,2] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[5,6,-4,1,-3,2] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-6,1,-3,2,-5,4] => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[3,6,1,2,-5,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,1,-3,6,2,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[5,6,1,-3,2,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,1,-3,2,4,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,1,2,-5,4,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,-3,2,-5,4,6] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,-3,5,2,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[3,1,2,6,-5,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,-3,2,6,-5,4] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,6,-3,2,-5,4] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,-3,5,6,2,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[1,6,-3,2,4,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[1,-3,-6,2,4,5] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,-3,2,6,4,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[3,1,2,4,-6,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,-3,2,4,-6,5] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,4,-3,2,-6,5] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,4,-3,6,2,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[1,-3,2,4,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[1,4,-3,2,5,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[1,4,5,-3,2,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,4,5,6,-3,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-6,1,-5,2,-4,3] => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[5,6,1,2,-4,3] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,-4,1,6,2,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,1,2,-4,3,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,-5,2,-4,3,6] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-4,1,5,2,3,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[5,1,2,6,-4,3] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,-5,2,6,-4,3] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,6,-5,2,-4,3] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-4,1,5,6,2,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[1,6,2,-4,3,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-6,1,2,-4,3,5] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,1,2,6,3,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[1,4,2,3,-6,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-4,1,2,3,-6,5] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,2,-4,3,-6,5] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,2,-4,6,3,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[1,2,-4,3,5,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[1,2,5,-4,3,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,2,5,6,-4,3] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,6,2,3,-5,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-6,1,2,3,-5,4] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,2,-6,3,-5,4] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,-5,2,6,3,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[1,2,3,-5,4,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,2,3,6,-5,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,2,3,4,-6,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,2,3,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,2,-1,3,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,4,2,6,3,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,5,6,2,3,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,5,-1,2,3,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[4,6,2,-1,3,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,6,-1,4,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,-1,2,6,3,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,-1,6,2,3,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,5,2,3,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[1,2,3,-5,-6,4] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,2,5,-4,-6,3] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,2,-4,-5,3,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,2,-4,6,-5,3] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,-4,2,5,-6,3] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,2,-4,-5,-6,3] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,-3,2,-5,-6,4] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,4,5,-3,-6,2] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,4,-3,-5,2,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,4,-3,6,-5,2] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,-3,4,5,-6,2] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,4,-3,-5,-6,2] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,-3,-4,2,5,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,-3,-4,2,-6,5] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,-3,5,-4,2,6] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,-3,5,6,-4,2] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,-3,5,-4,-6,2] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-3,1,4,-5,2,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-3,1,4,6,-5,2] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,1,4,5,-6,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-3,1,4,-5,-6,2] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,-3,-4,-5,2,6] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,-3,-4,6,-5,2] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,-3,-6,5,-4,2] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-5,1,3,-4,-6,2] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,-3,-4,-5,-6,2] => 011110 => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-2,1,3,-5,-6,4] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,1,5,-4,-6,3] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,1,-4,-5,3,6] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,1,-4,6,-5,3] => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[-2,-4,1,5,-6,3] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,1,-4,-5,-6,3] => 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,-2,1,-5,-6,4] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,4,5,-2,-6,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,4,-2,-5,1,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,4,-2,6,-5,1] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-2,4,5,-6,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,4,-2,-5,-6,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,-2,-4,1,5,6] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,-2,-4,1,-6,5] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-2,5,-4,1,6] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-2,5,6,-4,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-2,5,-4,-6,1] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-2,3,4,-5,1,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,3,4,6,-5,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,3,4,5,-6,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-2,3,4,-5,-6,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,-2,-4,-5,1,6] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,-2,-4,6,-5,1] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-2,-6,5,-4,1] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-2,5,3,-4,-6,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,-2,-4,-5,-6,1] => 011110 => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-2,-3,1,4,-6,5] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,-3,1,-5,4,6] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,-3,1,6,-5,4] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,-3,1,-5,-6,4] => 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,4,-3,1,-6,5] => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[-2,4,5,-3,-6,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,4,-3,-5,1,6] => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,4,-3,6,-5,1] => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[-2,-3,4,5,-6,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,4,-3,-5,-6,1] => 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,3,-4,1,-6,5] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[2,3,5,-4,-6,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,3,4,-2,-6,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,3,-4,-5,1,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,3,-4,6,-5,1] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[2,-4,3,5,-6,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,5,3,-2,-6,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,3,-4,-5,-6,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-2,-3,-4,1,-6,5] => 111010 => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,-3,5,-4,-6,1] => 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,-5,4,-3,-6,1] => 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,2,-3,-5,-6,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-3,2,6,-5,1,4] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,2,4,-5,-3,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,-5,2,3,-4,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,-5,6,-4,1,3] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[6,4,-5,-3,1,2] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,-5,6,-4,1,2] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-6,-5,-4,3,1,2] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-1,6,5,3,4,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,4,5,3,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,4,5,2,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,4,3,5,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,3,4,5,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,3,4,2,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,5,6,4,3,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,5,6,4,2,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,5,6,3,4,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,5,6,3,2,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,5,4,6,3,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,5,4,6,2,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,5,4,3,6,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,5,3,4,6,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,5,3,4,2,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,4,5,6,3,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,4,5,6,2,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,4,5,3,6,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,4,5,3,2,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,4,5,2,3,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,4,3,5,6,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,4,3,5,2,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,4,5,6,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,4,5,2,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,4,2,5,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,-1,5,4,3,2] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,5,4,2,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,5,3,4,2] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,5,3,2,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,4,5,3,2] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,4,5,2,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,4,3,5,2] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,4,3,2,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,4,2,3,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,3,4,2,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,3,2,4,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,-1,2,3,4,5] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,5,-1,4,3,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,5,-1,4,2,3] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,5,-1,3,4,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,5,-1,3,2,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,5,4,-1,3,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,5,4,-1,2,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,5,4,3,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,5,3,4,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,5,3,4,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,5,-1,3,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,5,-1,2,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,5,3,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,5,3,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,5,2,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,3,5,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,3,5,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,3,4,5,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,3,4,5,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,3,4,2,5,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,-1,4,2,3] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[5,6,-1,3,4,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[5,6,-1,3,2,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[5,6,4,-1,3,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,4,-1,2,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,4,3,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,4,3,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,4,2,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,3,4,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,3,2,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,4,6,-1,3,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,4,6,-1,2,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,4,6,3,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,4,6,3,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,4,6,2,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,4,3,6,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,4,3,6,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,4,6,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,4,6,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,4,2,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,6,-1,3,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,6,3,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,3,6,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,3,2,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,3,5,6,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,3,5,6,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,3,5,2,6,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,5,3,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,6,4,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,6,3,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,-1,3,4,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,2,-1,3,4,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,2,5,-1,4,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,6,-1,3,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,2,6,-1,3,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,2,3,-1,4,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,5,6,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,2,4,6,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,3,6,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,5,2,4,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,6,2,3,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,2,3,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,-1,2,3,5,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,-1,2,3,4,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[4,5,2,-1,3,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,6,2,-1,4,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,2,-1,3,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,2,-1,5,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,5,3,-1,4,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,6,3,-1,4,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,2,6,-1,3] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,2,6,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,3,6,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,5,3,6,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,2,5,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,6,3,4,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,5,-1,2,4,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[4,5,-1,2,3,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,6,-1,2,4,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[4,6,-1,2,3,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,4,-1,3,5,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,5,-1,3,4,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,6,-1,3,4,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,5,6,2,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,5,6,2,-1,3] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,6,3,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,5,6,3,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,5,2,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,5,3,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,6,4,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,5,6,-1,2,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[3,4,6,-1,2,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,6,-1,3,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,5,6,-1,3,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,5,-1,3,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,5,-1,4,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,6,-1,4,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,4,5,6,-1,3] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,5,6,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,4,6,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,-1,5,6,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[2,-1,3,5,6,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,6,4,5,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-1,4,5,3,6] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,4,5,6,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,4,6,5,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,5,4,6,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[2,-1,6,4,5,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[3,2,-1,5,6,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-1,2,3,5,6,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,2,4,5,3,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,2,4,5,3,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,4,5,6,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,4,6,5,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,5,4,6,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,2,6,4,5,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,2,5,6,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[5,3,4,2,-1,6] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,3,4,2,6,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,4,6,5,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,3,5,4,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[-1,3,5,4,2,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,5,4,6,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,6,4,5,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,3,6,5,4,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,4,3,6,5,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[-1,6,3,5,4,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[1,2,-6,5,3,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-6,1,2,5,3,4] => 100000 => [1,6] => ([(5,6)],7) => 2
[6,1,-4,2,-5,3] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[5,1,-6,-3,2,4] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-6,1,4,5,2,3] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,1,-6,5,3,4] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,3,1,2,-5,4] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,6,1,2,-5,3] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[6,-3,1,-4,2,5] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-6,5,1,-3,2,4] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,5,-4,1,2,3] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,-3,1,6,-4,2] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-6,-2,4,1,3,5] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-6,-2,1,5,3,4] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[6,-2,-4,1,-5,3] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,6,-3,1,-5,2] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-2,-6,5,1,4] => 011000 => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-6,-2,4,5,1,3] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[3,5,-4,2,-6,1] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,4,-5,2,-6,1] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,-6,-3,2,-5,1] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-5,-4,2,-6,1] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-5,-4,-3,2,-6,1] => 111010 => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,-3,2,6,-5,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,4,2,3,-6,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,6,2,3,-5,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,-4,2,3,-5,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-3,-5,2,4,-6,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,-6,2,4,-5,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[3,-4,2,5,-6,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-4,-3,2,5,-6,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,-3,2,-6,-5,1] => 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,-5,3,4,-6,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[6,2,3,4,-5,1] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,2,3,-6,-5,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-6,2,3,-5,-4,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-3,2,4,5,-6,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-3,2,4,-6,-5,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,3,4,-6,-5,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,3,-6,-5,-4,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,-4,3,6,1,2] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-6,4,2,-5,1,3] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,5,-4,-6,1,3] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-3,-6,2,-5,1,4] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,-3,2,-6,1,5] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-4,-3,2,-5,1,6] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,5,3,-6,1,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-6,3,-5,1,4] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[2,-4,3,-6,1,5] => 010100 => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,2,3,-5,1,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-5,2,3,-4,1,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,2,4,-6,1,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-3,2,4,-5,1,6] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-2,3,4,-6,1,5] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,3,4,-5,1,6] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,3,-5,-4,1,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-4,-6,1,-5,2,3] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,-4,3,1,2,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[6,-5,2,1,3,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,2,-4,1,3,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[-3,-2,-6,1,4,5] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-2,3,-5,1,4,6] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,5,-6,1,2,3] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[4,5,-6,-3,1,2] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,4,-5,1,2,6] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[3,4,-6,-5,1,2] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,4,5,-6,1,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[-5,3,4,-6,1,2] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,3,5,-6,1,2] => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,-4,3,-6,1,2] => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,5,-6,-2,1,3] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,5,-6,-3,-2,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,4,-5,-2,1,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,4,-6,-5,-2,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[3,4,5,-6,-2,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,3,4,-6,-2,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,3,5,-6,-2,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,-4,3,-6,-2,1] => 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,4,5,-6,-3,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,3,-6,-4,1,5] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,3,5,-6,-4,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,2,3,4,-6,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,2,3,-6,-5,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-4,2,3,5,-6,1] => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[-5,-4,2,3,-6,1] => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,-5,2,3,-6,1] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,-5,-3,2,-6,1] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[2,-4,-3,1,-6,5] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-5,2,-3,6,1,4] => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => 4
[2,-6,4,-3,-5,1] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-2,1,4,-6,-5,3] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[4,-6,1,-3,-5,2] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[5,6,3,1,-4,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[2,-3,-5,-4,-6,1] => 011110 => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,-4,-3,-5,-6,1] => 011110 => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[4,2,-6,-3,-5,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-5,2,-3,-4,-6,1] => 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,2,-4,-3,-6,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[6,-4,2,-3,-5,1] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[4,3,-2,-6,-5,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,3,-2,-4,-6,1] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[6,-2,3,-4,-5,1] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[5,6,3,-2,-4,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-2,6,4,-3,-5,1] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[3,6,4,-2,-5,1] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,-4,5,-3,-6,1] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[2,-4,-3,6,-5,1] => 011010 => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[5,3,-2,6,-4,1] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,3,-4,-6,-5,2] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,3,-5,-4,-6,2] => 001110 => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,-6,3,-4,-5,2] => 010110 => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,6,3,-5,-4,2] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,6,4,-3,-5,2] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,3,-5,6,-4,2] => 001010 => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,2,4,-6,-5,3] => 000110 => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[2,-4,-3,-5,1,6] => 011100 => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[5,3,-2,-4,1,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,3,-5,-4,2,6] => 001100 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[-2,-5,-3,6,1,4] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-5,4,1,-3,-6,2] => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[5,-4,3,1,-6,2] => 010010 => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[-2,-3,5,1,4,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-4,-2,5,1,3,6] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-5,2,4,1,3,6] => 100000 => [1,6] => ([(5,6)],7) => 2
[-2,-3,1,6,4,5] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-4,-2,1,6,3,5] => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
[-4,3,1,6,2,5] => 100000 => [1,6] => ([(5,6)],7) => 2
[5,-2,1,6,3,4] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,2,-3,5,1,4] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,-4,2,5,1,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-4,6,3,5,1,2] => 100000 => [1,6] => ([(5,6)],7) => 2
[2,-5,6,4,1,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[-2,-3,-4,6,1,5] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-4,-5,-2,6,1,3] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-6,-2,-3,5,1,4] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[-6,-4,-2,5,1,3] => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[5,-6,2,4,1,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,4,3,-1,2,5] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[4,-1,2,6,5,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,-1,6,2,4,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[5,3,2,6,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,6,2,4,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,6,4,2,-1] => 000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,2,6,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,6,2,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,3,2,-1,4] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,6,-1,2,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,6,3,-1,2,4] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,6,4,-1,2] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[5,3,6,-1,4,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,2,-1,5,3] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,-1,2,5,3] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,-1,4,2,5,3] => 010000 => [2,5] => ([(4,6),(5,6)],7) => 3
[6,4,-1,5,2,3] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,4,3,2,-1,5] => 000010 => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,-1,3,2,5] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,4,3,-1,5,2] => 000100 => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
[6,4,-1,3,5,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
[6,4,-1,5,3,2] => 001000 => [3,4] => ([(3,6),(4,6),(5,6)],7) => 3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 2,4,2 6,18,18,6 24,96,144,96,24 120,600,1200,1200,600,120
$F_{1} = q + q^{2}$
$F_{2} = 2\ q + 4\ q^{2} + 2\ q^{3}$
$F_{3} = 6\ q + 18\ q^{2} + 18\ q^{3} + 6\ q^{4}$
$F_{4} = 24\ q + 96\ q^{2} + 144\ q^{3} + 96\ q^{4} + 24\ q^{5}$
$F_{5} = 120\ q + 600\ q^{2} + 1200\ q^{3} + 1200\ q^{4} + 600\ q^{5} + 120\ q^{6}$
Description
The number of distinct Laplacian eigenvalues of a graph.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Map
signs
Description
The binary word recording the signs of a signed permutation.
This map sends a signed permutation $\pi\in\mathfrak H_n$ to the binary word $w$ of length $n$ such that $w_i = 0$ if $\pi(i) > 0$.
This map sends a signed permutation $\pi\in\mathfrak H_n$ to the binary word $w$ of length $n$ such that $w_i = 0$ if $\pi(i) > 0$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!