Identifier
-
Mp00324:
Graphs
—chromatic difference sequence⟶
Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤ
Values
([],1) => [1] => [1] => ([],1) => 0
([],2) => [2] => [1,1] => ([(0,1)],2) => 1
([(0,1)],2) => [1,1] => [2] => ([],2) => 0
([],3) => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
([(1,2)],3) => [2,1] => [1,2] => ([(1,2)],3) => 1
([(0,2),(1,2)],3) => [2,1] => [1,2] => ([(1,2)],3) => 1
([(0,1),(0,2),(1,2)],3) => [1,1,1] => [3] => ([],3) => 0
([],4) => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(2,3)],4) => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
([(1,3),(2,3)],4) => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
([(0,3),(1,3),(2,3)],4) => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
([(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,3] => ([(2,3)],4) => 1
([(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,3] => ([(2,3)],4) => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,3] => ([(2,3)],4) => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [4] => ([],4) => 0
([],5) => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(3,4)],5) => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(2,4),(3,4)],5) => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(1,4),(2,4),(3,4)],5) => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,4),(2,4),(3,4)],5) => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,4] => ([(3,4)],5) => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,4] => ([(3,4)],5) => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,4] => ([(3,4)],5) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,4] => ([(3,4)],5) => 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 0
([],6) => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(4,5)],6) => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(3,5),(4,5)],6) => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(2,5),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 0
([],7) => [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
([(5,6)],7) => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
([(4,6),(5,6)],7) => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
([(3,6),(4,6),(5,6)],7) => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
([(2,6),(3,6),(4,6),(5,6)],7) => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
([(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
>>> Load all 164 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Map
complement
Description
The complement of a composition.
The complement of a composition $I$ is defined as follows:
If $I$ is the empty composition, then the complement is also the empty composition. Otherwise, let $S$ be the descent set corresponding to $I=(i_1,\dots,i_k)$, that is, the subset
$$\{ i_1, i_1 + i_2, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$$
of $\{ 1, 2, \ldots, |I|-1 \}$. Then, the complement of $I$ is the composition of the same size as $I$, whose descent set is $\{ 1, 2, \ldots, |I|-1 \} \setminus S$.
The complement of a composition $I$ coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to $I$.
The complement of a composition $I$ is defined as follows:
If $I$ is the empty composition, then the complement is also the empty composition. Otherwise, let $S$ be the descent set corresponding to $I=(i_1,\dots,i_k)$, that is, the subset
$$\{ i_1, i_1 + i_2, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$$
of $\{ 1, 2, \ldots, |I|-1 \}$. Then, the complement of $I$ is the composition of the same size as $I$, whose descent set is $\{ 1, 2, \ldots, |I|-1 \} \setminus S$.
The complement of a composition $I$ coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to $I$.
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!