Processing math: 100%

Identifier
Values
[1,2] => [[2,1],[]] => ([(0,1),(0,2)],3) => ([(1,2)],3) => 0
[2,1] => [[2,2],[1]] => ([(0,2),(1,2)],3) => ([(1,2)],3) => 0
[1,1,2] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => ([(1,3),(2,3)],4) => 0
[1,3] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => ([(1,3),(2,3)],4) => 0
[2,1,1] => [[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => 0
[3,1] => [[3,3],[2]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => 0
[1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(1,4),(2,4),(3,4)],5) => 0
[1,1,3] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 0
[1,4] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(1,4),(2,4),(3,4)],5) => 0
[2,1,1,1] => [[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 0
[3,1,1] => [[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 0
[4,1] => [[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 0
[1,1,1,1,2] => [[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 0
[1,1,1,3] => [[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
[1,1,4] => [[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
[1,5] => [[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 0
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 0
[3,1,1,1] => [[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
[4,1,1] => [[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
[5,1] => [[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 0
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 0
[1,1,1,1,3] => [[3,1,1,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[1,1,1,4] => [[4,1,1,1],[]] => ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
[1,1,5] => [[5,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[1,6] => [[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 0
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 0
[3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[4,1,1,1] => [[4,4,4,4],[3,3,3]] => ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
[5,1,1] => [[5,5,5],[4,4]] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
[6,1] => [[6,6],[5]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 0
search for individual values
searching the database for the individual values of this statistic
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition (a1,,an), this is the ribbon shape whose ith row from the bottom has ai cells.