Processing math: 100%

Identifier
Values
[1,2] => [2,1] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 1
[1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 1
[2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(1,2)],3) => 1
[1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 1
[2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,3),(2,3)],4) => 1
[3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 1
[1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => 1
[1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => 1
[4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 1
[1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[1,1,1,2,2] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[1,1,2,1,2] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => 1
[1,1,3,2] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[1,2,1,1,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[1,2,2,2] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[1,3,1,2] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => 1
[1,4,2] => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[2,1,1,1,2] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[2,1,2,2] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[2,2,1,2] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => 1
[2,3,2] => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[3,1,1,2] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[3,2,2] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
[4,1,2] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => 1
[5,2] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 1
search for individual values
searching the database for the individual values of this statistic
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
complement
Description
The complement of a composition.
The complement of a composition I is defined as follows:
If I is the empty composition, then the complement is also the empty composition. Otherwise, let S be the descent set corresponding to I=(i1,,ik), that is, the subset
{i1,i1+i2,,i1+i2++ik1}
of {1,2,,|I|1}. Then, the complement of I is the composition of the same size as I, whose descent set is {1,2,,|I|1}S.
The complement of a composition I coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to I.
Map
block-cut tree
Description
Sends a graph to its block-cut tree.
The block-cut tree has a vertex for each block and for each cut-vertex of the given graph, and there is an edge for each pair of block and cut-vertex that belongs to that block. A block is a maximal biconnected (or 2-vertex connected) subgraph. A cut-vertex is a vertex whose removal increases the number of connected components.