Identifier
Values
[[1]] => [1] => ([],1) => 1
[[1,2]] => [2] => ([],2) => 2
[[1],[2]] => [2] => ([],2) => 2
[[1,2,3]] => [3] => ([],3) => 3
[[1,3],[2]] => [2,1] => ([(0,2),(1,2)],3) => 3
[[1,2],[3]] => [3] => ([],3) => 3
[[1],[2],[3]] => [3] => ([],3) => 3
[[1,2,3,4]] => [4] => ([],4) => 4
[[1,3,4],[2]] => [2,2] => ([(1,3),(2,3)],4) => 4
[[1,2,4],[3]] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 6
[[1,2,3],[4]] => [4] => ([],4) => 4
[[1,3],[2,4]] => [2,2] => ([(1,3),(2,3)],4) => 4
[[1,2],[3,4]] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 6
[[1,4],[2],[3]] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 6
[[1,3],[2],[4]] => [2,2] => ([(1,3),(2,3)],4) => 4
[[1,2],[3],[4]] => [4] => ([],4) => 4
[[1],[2],[3],[4]] => [4] => ([],4) => 4
[[1,2,3,4,5]] => [5] => ([],5) => 5
[[1,3,4,5],[2]] => [2,3] => ([(2,4),(3,4)],5) => 5
[[1,2,4,5],[3]] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 6
[[1,2,3,5],[4]] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 7
[[1,2,3,4],[5]] => [5] => ([],5) => 5
[[1,3,5],[2,4]] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 10
[[1,2,5],[3,4]] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 6
[[1,3,4],[2,5]] => [2,3] => ([(2,4),(3,4)],5) => 5
[[1,2,4],[3,5]] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 6
[[1,2,3],[4,5]] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 7
[[1,4,5],[2],[3]] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 6
[[1,3,5],[2],[4]] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 10
[[1,2,5],[3],[4]] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 7
[[1,3,4],[2],[5]] => [2,3] => ([(2,4),(3,4)],5) => 5
[[1,2,4],[3],[5]] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 6
[[1,2,3],[4],[5]] => [5] => ([],5) => 5
[[1,4],[2,5],[3]] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 6
[[1,3],[2,5],[4]] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 10
[[1,2],[3,5],[4]] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 7
[[1,3],[2,4],[5]] => [2,3] => ([(2,4),(3,4)],5) => 5
[[1,2],[3,4],[5]] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 6
[[1,5],[2],[3],[4]] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 7
[[1,4],[2],[3],[5]] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 6
[[1,3],[2],[4],[5]] => [2,3] => ([(2,4),(3,4)],5) => 5
[[1,2],[3],[4],[5]] => [5] => ([],5) => 5
[[1],[2],[3],[4],[5]] => [5] => ([],5) => 5
[[1,2,3,4,5,6]] => [6] => ([],6) => 6
[[1,3,4,5,6],[2]] => [2,4] => ([(3,5),(4,5)],6) => 6
[[1,2,4,5,6],[3]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,2,3,5,6],[4]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,2,3,4,6],[5]] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 10
[[1,2,3,4,5],[6]] => [6] => ([],6) => 6
[[1,3,5,6],[2,4]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[[1,2,5,6],[3,4]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,2,3,6],[4,5]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,3,4,5],[2,6]] => [2,4] => ([(3,5),(4,5)],6) => 6
[[1,2,4,5],[3,6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,2,3,5],[4,6]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,2,3,4],[5,6]] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 10
[[1,4,5,6],[2],[3]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,3,5,6],[2],[4]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[[1,2,5,6],[3],[4]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,2,3,6],[4],[5]] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 10
[[1,3,4,5],[2],[6]] => [2,4] => ([(3,5),(4,5)],6) => 6
[[1,2,4,5],[3],[6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,2,3,5],[4],[6]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,2,3,4],[5],[6]] => [6] => ([],6) => 6
[[1,3,5],[2,4,6]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[[1,2,5],[3,4,6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,2,3],[4,5,6]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,3,6],[2,5],[4]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[[1,2,6],[3,5],[4]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,4,5],[2,6],[3]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,3,5],[2,6],[4]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[[1,2,5],[3,6],[4]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,2,3],[4,6],[5]] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 10
[[1,3,5],[2,4],[6]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[[1,2,5],[3,4],[6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,3,4],[2,5],[6]] => [2,4] => ([(3,5),(4,5)],6) => 6
[[1,2,4],[3,5],[6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,2,3],[4,5],[6]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,5,6],[2],[3],[4]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,2,6],[3],[4],[5]] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 10
[[1,4,5],[2],[3],[6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,3,5],[2],[4],[6]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[[1,2,5],[3],[4],[6]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,3,4],[2],[5],[6]] => [2,4] => ([(3,5),(4,5)],6) => 6
[[1,2,4],[3],[5],[6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,2,3],[4],[5],[6]] => [6] => ([],6) => 6
[[1,4],[2,5],[3,6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,3],[2,5],[4,6]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[[1,2],[3,5],[4,6]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,5],[2,6],[3],[4]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,2],[3,6],[4],[5]] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 10
[[1,4],[2,5],[3],[6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,3],[2,5],[4],[6]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
[[1,2],[3,5],[4],[6]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,3],[2,4],[5],[6]] => [2,4] => ([(3,5),(4,5)],6) => 6
[[1,2],[3,4],[5],[6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,6],[2],[3],[4],[5]] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 10
[[1,5],[2],[3],[4],[6]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 7
[[1,4],[2],[3],[5],[6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 6
[[1,3],[2],[4],[5],[6]] => [2,4] => ([(3,5),(4,5)],6) => 6
[[1,2],[3],[4],[5],[6]] => [6] => ([],6) => 6
>>> Load all 599 entries. <<<
[[1],[2],[3],[4],[5],[6]] => [6] => ([],6) => 6
[[1,2,3,4,5,6,7]] => [7] => ([],7) => 7
[[1,3,4,5,6,7],[2]] => [2,5] => ([(4,6),(5,6)],7) => 7
[[1,2,4,5,6,7],[3]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,5,6,7],[4]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,4,6,7],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,2,3,4,5,7],[6]] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 11
[[1,2,3,4,5,6],[7]] => [7] => ([],7) => 7
[[1,3,5,6,7],[2,4]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5,6,7],[3,4]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,6,7],[4,5]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,4,7],[5,6]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,3,4,5,6],[2,7]] => [2,5] => ([(4,6),(5,6)],7) => 7
[[1,2,4,5,6],[3,7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,5,6],[4,7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,4,6],[5,7]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,2,3,4,5],[6,7]] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 11
[[1,4,5,6,7],[2],[3]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,3,5,6,7],[2],[4]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5,6,7],[3],[4]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,6,7],[4],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,2,3,4,7],[5],[6]] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 11
[[1,3,4,5,6],[2],[7]] => [2,5] => ([(4,6),(5,6)],7) => 7
[[1,2,4,5,6],[3],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,5,6],[4],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,4,6],[5],[7]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,2,3,4,5],[6],[7]] => [7] => ([],7) => 7
[[1,2,3,7],[4,5,6]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,3,5,6],[2,4,7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5,6],[3,4,7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,6],[4,5,7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,4],[5,6,7]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,3,6,7],[2,5],[4]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,6,7],[3,5],[4]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,7],[4,6],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,4,5,6],[2,7],[3]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,3,5,6],[2,7],[4]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5,6],[3,7],[4]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,6],[4,7],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,2,3,4],[5,7],[6]] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 11
[[1,3,5,6],[2,4],[7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5,6],[3,4],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,6],[4,5],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,3,4,5],[2,6],[7]] => [2,5] => ([(4,6),(5,6)],7) => 7
[[1,2,4,5],[3,6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,5],[4,6],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,4],[5,6],[7]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,5,6,7],[2],[3],[4]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,6,7],[3],[4],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,2,3,7],[4],[5],[6]] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 11
[[1,4,5,6],[2],[3],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,3,5,6],[2],[4],[7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5,6],[3],[4],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,6],[4],[5],[7]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,3,4,5],[2],[6],[7]] => [2,5] => ([(4,6),(5,6)],7) => 7
[[1,2,4,5],[3],[6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,5],[4],[6],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3,4],[5],[6],[7]] => [7] => ([],7) => 7
[[1,3,6],[2,5,7],[4]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,6],[3,5,7],[4]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3],[4,6,7],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,3,5],[2,4,6],[7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5],[3,4,6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3],[4,5,6],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,3,6],[2,5],[4,7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,6],[3,5],[4,7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,4,5],[2,6],[3,7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,3,5],[2,6],[4,7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5],[3,6],[4,7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3],[4,6],[5,7]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,2,7],[3,6],[4],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,5,6],[2,7],[3],[4]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,6],[3,7],[4],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,2,3],[4,7],[5],[6]] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 11
[[1,3,6],[2,5],[4],[7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,6],[3,5],[4],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,4,5],[2,6],[3],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,3,5],[2,6],[4],[7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5],[3,6],[4],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,3],[4,6],[5],[7]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,3,5],[2,4],[6],[7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5],[3,4],[6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,3,4],[2,5],[6],[7]] => [2,5] => ([(4,6),(5,6)],7) => 7
[[1,2,4],[3,5],[6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3],[4,5],[6],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,6,7],[2],[3],[4],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,2,7],[3],[4],[5],[6]] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 11
[[1,5,6],[2],[3],[4],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2,6],[3],[4],[5],[7]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,4,5],[2],[3],[6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,3,5],[2],[4],[6],[7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2,5],[3],[4],[6],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,3,4],[2],[5],[6],[7]] => [2,5] => ([(4,6),(5,6)],7) => 7
[[1,2,4],[3],[5],[6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,2,3],[4],[5],[6],[7]] => [7] => ([],7) => 7
[[1,5],[2,6],[3,7],[4]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2],[3,6],[4,7],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,4],[2,5],[3,6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,3],[2,5],[4,6],[7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2],[3,5],[4,6],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,6],[2,7],[3],[4],[5]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,2],[3,7],[4],[5],[6]] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 11
[[1,5],[2,6],[3],[4],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,2],[3,6],[4],[5],[7]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,4],[2,5],[3],[6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,3],[2,5],[4],[6],[7]] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 10
[[1,2],[3,5],[4],[6],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,3],[2,4],[5],[6],[7]] => [2,5] => ([(4,6),(5,6)],7) => 7
[[1,2],[3,4],[5],[6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,7],[2],[3],[4],[5],[6]] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 11
[[1,6],[2],[3],[4],[5],[7]] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 10
[[1,5],[2],[3],[4],[6],[7]] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 7
[[1,4],[2],[3],[5],[6],[7]] => [3,4] => ([(3,6),(4,6),(5,6)],7) => 7
[[1,3],[2],[4],[5],[6],[7]] => [2,5] => ([(4,6),(5,6)],7) => 7
[[1,2],[3],[4],[5],[6],[7]] => [7] => ([],7) => 7
[[1],[2],[3],[4],[5],[6],[7]] => [7] => ([],7) => 7
[[1,2,3,4,5,6,7,8]] => [8] => ([],8) => 8
[[1,3,4,5,6,7,8],[2]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2,4,5,6,7,8],[3]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,5,6,7,8],[4]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4,6,7,8],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,5,7,8],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,3,4,5,6,8],[7]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,2,3,4,5,6,7],[8]] => [8] => ([],8) => 8
[[1,3,5,6,7,8],[2,4]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6,7,8],[3,4]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6,7,8],[4,5]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4,7,8],[5,6]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,5,8],[6,7]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,3,4,5,6,7],[2,8]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2,4,5,6,7],[3,8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,5,6,7],[4,8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4,6,7],[5,8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,5,7],[6,8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,3,4,5,6],[7,8]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,4,5,6,7,8],[2],[3]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3,5,6,7,8],[2],[4]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6,7,8],[3],[4]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6,7,8],[4],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,7,8],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,3,4,5,8],[6],[7]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,3,4,5,6,7],[2],[8]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2,4,5,6,7],[3],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,5,6,7],[4],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4,6,7],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,5,7],[6],[8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,3,4,5,6],[7],[8]] => [8] => ([],8) => 8
[[1,2,3,7,8],[4,5,6]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4,8],[5,6,7]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,3,5,6,7],[2,4,8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6,7],[3,4,8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6,7],[4,5,8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4,7],[5,6,8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,5],[6,7,8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,3,6,7,8],[2,5],[4]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,6,7,8],[3,5],[4]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,7,8],[4,6],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,8],[5,7],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,4,5,6,7],[2,8],[3]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3,5,6,7],[2,8],[4]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6,7],[3,8],[4]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6,7],[4,8],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,7],[5,8],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,3,4,5],[6,8],[7]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,3,5,6,7],[2,4],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6,7],[3,4],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6,7],[4,5],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4,7],[5,6],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,3,4,5,6],[2,7],[8]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2,4,5,6],[3,7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,5,6],[4,7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4,6],[5,7],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,5],[6,7],[8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,5,6,7,8],[2],[3],[4]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,6,7,8],[3],[4],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,7,8],[4],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,3,4,8],[5],[6],[7]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,4,5,6,7],[2],[3],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3,5,6,7],[2],[4],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6,7],[3],[4],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6,7],[4],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,7],[5],[6],[8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,3,4,5,6],[2],[7],[8]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2,4,5,6],[3],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,5,6],[4],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4,6],[5],[7],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4,5],[6],[7],[8]] => [8] => ([],8) => 8
[[1,2,3,7],[4,5,6,8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4],[5,6,7,8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,8],[4,6,7],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,3,6,7],[2,5,8],[4]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,6,7],[3,5,8],[4]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,7],[4,6,8],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4],[5,7,8],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,3,7],[4,5,6],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,3,5,6],[2,4,7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6],[3,4,7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6],[4,5,7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4],[5,6,7],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,3,6,7],[2,5],[4,8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,6,7],[3,5],[4,8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,7],[4,6],[5,8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,4,5,6],[2,7],[3,8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3,5,6],[2,7],[4,8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6],[3,7],[4,8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6],[4,7],[5,8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4],[5,7],[6,8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,7,8],[3,6],[4],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,8],[4,7],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,5,6,7],[2,8],[3],[4]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,6,7],[3,8],[4],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,7],[4,8],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,3,4],[5,8],[6],[7]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,3,6,7],[2,5],[4],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,6,7],[3,5],[4],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,7],[4,6],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,4,5,6],[2,7],[3],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3,5,6],[2,7],[4],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6],[3,7],[4],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6],[4,7],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,4],[5,7],[6],[8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,3,5,6],[2,4],[7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6],[3,4],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6],[4,5],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,3,4,5],[2,6],[7],[8]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2,4,5],[3,6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,5],[4,6],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4],[5,6],[7],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,6,7,8],[2],[3],[4],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,7,8],[3],[4],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,3,8],[4],[5],[6],[7]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,5,6,7],[2],[3],[4],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,6,7],[3],[4],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3,7],[4],[5],[6],[8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,4,5,6],[2],[3],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3,5,6],[2],[4],[7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5,6],[3],[4],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,6],[4],[5],[7],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,3,4,5],[2],[6],[7],[8]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2,4,5],[3],[6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,5],[4],[6],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3,4],[5],[6],[7],[8]] => [8] => ([],8) => 8
[[1,3,6],[2,5,7],[4,8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,6],[3,5,7],[4,8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3],[4,6,7],[5,8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,7],[3,6,8],[4],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3],[4,7,8],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,3,6],[2,5,7],[4],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,6],[3,5,7],[4],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3],[4,6,7],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,3,5],[2,4,6],[7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5],[3,4,6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3],[4,5,6],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,7],[3,6],[4,8],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,5,6],[2,7],[3,8],[4]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,6],[3,7],[4,8],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3],[4,7],[5,8],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,3,6],[2,5],[4,7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,6],[3,5],[4,7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,4,5],[2,6],[3,7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3,5],[2,6],[4,7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5],[3,6],[4,7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3],[4,6],[5,7],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,8],[3,7],[4],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,6,7],[2,8],[3],[4],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,7],[3,8],[4],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,3],[4,8],[5],[6],[7]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,2,7],[3,6],[4],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,5,6],[2,7],[3],[4],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,6],[3,7],[4],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,3],[4,7],[5],[6],[8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,3,6],[2,5],[4],[7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,6],[3,5],[4],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,4,5],[2,6],[3],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3,5],[2,6],[4],[7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5],[3,6],[4],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,3],[4,6],[5],[7],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,3,5],[2,4],[6],[7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5],[3,4],[6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3,4],[2,5],[6],[7],[8]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2,4],[3,5],[6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3],[4,5],[6],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,7,8],[2],[3],[4],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2,8],[3],[4],[5],[6],[7]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,6,7],[2],[3],[4],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2,7],[3],[4],[5],[6],[8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,5,6],[2],[3],[4],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2,6],[3],[4],[5],[7],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,4,5],[2],[3],[6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3,5],[2],[4],[6],[7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2,5],[3],[4],[6],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,3,4],[2],[5],[6],[7],[8]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2,4],[3],[5],[6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,2,3],[4],[5],[6],[7],[8]] => [8] => ([],8) => 8
[[1,5],[2,6],[3,7],[4,8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2],[3,6],[4,7],[5,8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,6],[2,7],[3,8],[4],[5]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2],[3,7],[4,8],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,5],[2,6],[3,7],[4],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2],[3,6],[4,7],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,4],[2,5],[3,6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3],[2,5],[4,6],[7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2],[3,5],[4,6],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,7],[2,8],[3],[4],[5],[6]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,2],[3,8],[4],[5],[6],[7]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,6],[2,7],[3],[4],[5],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,2],[3,7],[4],[5],[6],[8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,5],[2,6],[3],[4],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,2],[3,6],[4],[5],[7],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,4],[2,5],[3],[6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3],[2,5],[4],[6],[7],[8]] => [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 10
[[1,2],[3,5],[4],[6],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,3],[2,4],[5],[6],[7],[8]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2],[3,4],[5],[6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,8],[2],[3],[4],[5],[6],[7]] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 14
[[1,7],[2],[3],[4],[5],[6],[8]] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 11
[[1,6],[2],[3],[4],[5],[7],[8]] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 10
[[1,5],[2],[3],[4],[6],[7],[8]] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8) => 8
[[1,4],[2],[3],[5],[6],[7],[8]] => [3,5] => ([(4,7),(5,7),(6,7)],8) => 8
[[1,3],[2],[4],[5],[6],[7],[8]] => [2,6] => ([(5,7),(6,7)],8) => 8
[[1,2],[3],[4],[5],[6],[7],[8]] => [8] => ([],8) => 8
[[1],[2],[3],[4],[5],[6],[7],[8]] => [8] => ([],8) => 8
[[1,2,3,4,9],[5,6,7,8,10]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,4,5],[6,7,8,9,10]] => [6,4] => ([(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 11
[[1,2,3,4,5,11],[6,7,8,9,10,12]] => [6,6] => ([(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12) => 12
[[1,2,3,4,5,6],[7,8,9,10,11,12]] => [7,5] => ([(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12) => 14
[[1,2,3,4,5,6,7,8,9]] => [9] => ([],9) => 9
[[1,2,3,4,5,6,7,8],[9]] => [9] => ([],9) => 9
[[1,2,3,4,5,6,7],[8,9]] => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 15
[[1,2,3,4,5,6,7],[8],[9]] => [9] => ([],9) => 9
[[1,2,3,4,5,6],[7,8,9]] => [7,2] => ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 14
[[1,2,3,4,5,6],[7,8],[9]] => [7,2] => ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 14
[[1,2,3,4,5,6],[7],[8],[9]] => [9] => ([],9) => 9
[[1,2,3,4,5],[6,7,8,9]] => [6,3] => ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 11
[[1,2,3,4,5],[6,7,8],[9]] => [6,3] => ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 11
[[1,2,3,4,5],[6,7],[8],[9]] => [6,3] => ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 11
[[1,2,3,4,5],[6],[7],[8],[9]] => [9] => ([],9) => 9
[[1,2,3,4],[5,6,7,8],[9]] => [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 10
[[1,2,3,4],[5,6,7],[8],[9]] => [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 10
[[1,2,3,4],[5,6],[7],[8],[9]] => [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 10
[[1,2,3,4],[5],[6],[7],[8],[9]] => [9] => ([],9) => 9
[[1,2,3],[4,5,6],[7],[8],[9]] => [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9) => 9
[[1,2,3],[4,5],[6],[7],[8],[9]] => [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9) => 9
[[1,2,3],[4],[5],[6],[7],[8],[9]] => [9] => ([],9) => 9
[[1,2],[3,4],[5],[6],[7],[8],[9]] => [3,6] => ([(5,8),(6,8),(7,8)],9) => 9
[[1,2],[3],[4],[5],[6],[7],[8],[9]] => [9] => ([],9) => 9
[[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [9] => ([],9) => 9
[[1,2,3,4,5,6,7,8,9,10]] => [10] => ([],10) => 10
[[1,2,3,4,5,6,7,8,9],[10]] => [10] => ([],10) => 10
[[1,2,3,4,5,6,7,8],[9,10]] => [9,1] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 18
[[1,2,3,4,5,6,7,8],[9],[10]] => [10] => ([],10) => 10
[[1,2,3,4,5,6,7],[8,9,10]] => [8,2] => ([(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 15
[[1,2,3,4,5,6,7],[8,9],[10]] => [8,2] => ([(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 15
[[1,2,3,4,5,6,7],[8],[9],[10]] => [10] => ([],10) => 10
[[1,2,3,4,5,6],[7,8,9,10]] => [7,3] => ([(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 14
[[1,2,3,4,5,6],[7,8,9],[10]] => [7,3] => ([(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 14
[[1,2,3,4,5,6],[7,8],[9],[10]] => [7,3] => ([(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 14
[[1,2,3,4,5,6],[7],[8],[9],[10]] => [10] => ([],10) => 10
[[1,2,3,4,5],[6,7,8,9],[10]] => [6,4] => ([(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 11
[[1,2,3,4,5],[6,7,8],[9],[10]] => [6,4] => ([(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 11
[[1,2,3,4,5],[6,7],[8],[9],[10]] => [6,4] => ([(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 11
[[1,2,3,4,5],[6],[7],[8],[9],[10]] => [10] => ([],10) => 10
[[1,2,3,4],[5,6,7,8],[9],[10]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,4],[5,6,7],[8],[9],[10]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,4],[5,6],[7],[8],[9],[10]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,4],[5],[6],[7],[8],[9],[10]] => [10] => ([],10) => 10
[[1,2,3],[4,5,6],[7],[8],[9],[10]] => [4,6] => ([(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3],[4,5],[6],[7],[8],[9],[10]] => [4,6] => ([(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3],[4],[5],[6],[7],[8],[9],[10]] => [10] => ([],10) => 10
[[1,2],[3,4],[5],[6],[7],[8],[9],[10]] => [3,7] => ([(6,9),(7,9),(8,9)],10) => 10
[[1,2],[3],[4],[5],[6],[7],[8],[9],[10]] => [10] => ([],10) => 10
[[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => [10] => ([],10) => 10
[[1,2,3,4,5,6,7,8,9,10,11,12]] => [12] => ([],12) => 12
[[1,2,3,4,5],[6,7,8,9],[10],[11],[12]] => [6,6] => ([(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12) => 12
[[1,3,4,5,6,7,8,9],[2]] => [2,7] => ([(6,8),(7,8)],9) => 9
[[1,2,5,6,7,8,9],[3,4]] => [3,6] => ([(5,8),(6,8),(7,8)],9) => 9
[[1,4,5,6,7,8,9],[2],[3]] => [3,6] => ([(5,8),(6,8),(7,8)],9) => 9
[[1,2,3,7,8,9],[4,5,6]] => [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9) => 9
[[1,3,6,7,8,9],[2,5],[4]] => [2,2,5] => ([(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9) => 10
[[1,5,6,7,8,9],[2],[3],[4]] => [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9) => 9
[[1,2,3,4,9],[5,6,7,8]] => [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 10
[[1,6,7,8,9],[2],[3],[4],[5]] => [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 10
[[1,7,8,9],[2],[3],[4],[5],[6]] => [6,3] => ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 11
[[1,8,9],[2],[3],[4],[5],[6],[7]] => [7,2] => ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 14
[[1,9],[2],[3],[4],[5],[6],[7],[8]] => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 15
[[1,3,4,5,6,7,8,9,10],[2]] => [2,8] => ([(7,9),(8,9)],10) => 10
[[1,2,5,6,7,8,9,10],[3,4]] => [3,7] => ([(6,9),(7,9),(8,9)],10) => 10
[[1,4,5,6,7,8,9,10],[2],[3]] => [3,7] => ([(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,7,8,9,10],[4,5,6]] => [4,6] => ([(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,3,6,7,8,9,10],[2,5],[4]] => [2,2,6] => ([(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10) => 10
[[1,5,6,7,8,9,10],[2],[3],[4]] => [4,6] => ([(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,4,9,10],[5,6,7,8]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,6,7,8,9,10],[2],[3],[4],[5]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,7,8,9,10],[2],[3],[4],[5],[6]] => [6,4] => ([(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 11
[[1,8,9,10],[2],[3],[4],[5],[6],[7]] => [7,3] => ([(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 14
[[1,9,10],[2],[3],[4],[5],[6],[7],[8]] => [8,2] => ([(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 15
[[1,10],[2],[3],[4],[5],[6],[7],[8],[9]] => [9,1] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 18
[[1,6],[2,7],[3,8],[4,9],[5,10]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,4,5,6,7,9],[8]] => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 15
[[1,2,3,4,5,6,9],[7,8]] => [7,2] => ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 14
[[1,2,3,4,5,6,9],[7],[8]] => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 15
[[1,2,3,4,5,9],[6,7,8]] => [6,3] => ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 11
[[1,2,3,4,5,9],[6],[7],[8]] => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 15
[[1,2,3,4,9],[5],[6],[7],[8]] => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 15
[[1,2,3,9],[4],[5],[6],[7],[8]] => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 15
[[1,2,9],[3],[4],[5],[6],[7],[8]] => [8,1] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 15
[[1,2,3,4,5,6,7,8,10],[9]] => [9,1] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 18
[[1,2,3,4,5,6,7,10],[8,9]] => [8,2] => ([(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 15
[[1,2,3,4,5,6,7,10],[8],[9]] => [9,1] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 18
[[1,2,3,4,5,6,10],[7,8,9]] => [7,3] => ([(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 14
[[1,2,3,4,5,6,10],[7],[8],[9]] => [9,1] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 18
[[1,2,3,4,5,10],[6,7,8,9]] => [6,4] => ([(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 11
[[1,2,3,4,5,10],[6],[7],[8],[9]] => [9,1] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 18
[[1,2,3,4,10],[5],[6],[7],[8],[9]] => [9,1] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 18
[[1,2,3,10],[4],[5],[6],[7],[8],[9]] => [9,1] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 18
[[1,2,10],[3],[4],[5],[6],[7],[8],[9]] => [9,1] => ([(0,9),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 18
[[1,2,4,5,6,7,8,9],[3]] => [3,6] => ([(5,8),(6,8),(7,8)],9) => 9
[[1,3,5,6,7,8,9],[2],[4]] => [2,2,5] => ([(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9) => 10
[[1,8],[2],[3],[4],[5],[6],[7],[9]] => [7,2] => ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 14
[[1,2,4,5,6,7,8,9,10],[3]] => [3,7] => ([(6,9),(7,9),(8,9)],10) => 10
[[1,3,5,6,7,8,9,10],[2],[4]] => [2,2,6] => ([(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10) => 10
[[1,9],[2],[3],[4],[5],[6],[7],[8],[10]] => [8,2] => ([(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 15
[[1,3,4,5,6,7,8],[2,9]] => [2,7] => ([(6,8),(7,8)],9) => 9
[[1,3,4,5,6,7,8],[2],[9]] => [2,7] => ([(6,8),(7,8)],9) => 9
[[1,3,4,5,6,7],[2],[8],[9]] => [2,7] => ([(6,8),(7,8)],9) => 9
[[1,3,4,5,6],[2],[7],[8],[9]] => [2,7] => ([(6,8),(7,8)],9) => 9
[[1,3,4,5],[2],[6],[7],[8],[9]] => [2,7] => ([(6,8),(7,8)],9) => 9
[[1,3,4],[2],[5],[6],[7],[8],[9]] => [2,7] => ([(6,8),(7,8)],9) => 9
[[1,3],[2,5],[4],[6],[7],[8],[9]] => [2,2,5] => ([(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9) => 10
[[1,3],[2],[4],[5],[6],[7],[8],[9]] => [2,7] => ([(6,8),(7,8)],9) => 9
[[1,3,4,5,6,7,8,9],[2,10]] => [2,8] => ([(7,9),(8,9)],10) => 10
[[1,3,4,5,6,7,8,9],[2],[10]] => [2,8] => ([(7,9),(8,9)],10) => 10
[[1,3,4,5,6,7,8],[2],[9],[10]] => [2,8] => ([(7,9),(8,9)],10) => 10
[[1,3,4,5,6,7],[2],[8],[9],[10]] => [2,8] => ([(7,9),(8,9)],10) => 10
[[1,3,4,5,6],[2],[7],[8],[9],[10]] => [2,8] => ([(7,9),(8,9)],10) => 10
[[1,3,4,5],[2],[6],[7],[8],[9],[10]] => [2,8] => ([(7,9),(8,9)],10) => 10
[[1,3,4],[2],[5],[6],[7],[8],[9],[10]] => [2,8] => ([(7,9),(8,9)],10) => 10
[[1,3],[2,5],[4],[6],[7],[8],[9],[10]] => [2,2,6] => ([(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10) => 10
[[1,3],[2],[4],[5],[6],[7],[8],[9],[10]] => [2,8] => ([(7,9),(8,9)],10) => 10
[[1,2,3,4,7,8,9,10],[5,6]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,5,6,7,8,9,10],[4]] => [4,6] => ([(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,4,5,6,9,10],[7,8]] => [7,3] => ([(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 14
[[1,2,3,4,5,8,9,10],[6,7]] => [6,4] => ([(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 11
[[1,2,3,4,6,7,8,9,10],[5]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,4,5,6,7,9,10],[8]] => [8,2] => ([(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 15
[[1,2,3,4,5,6,8,9,10],[7]] => [7,3] => ([(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 14
[[1,2,3,4,5,7,8,9,10],[6]] => [6,4] => ([(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 11
[[1,2,3,4,5,6,10,11,12],[7,8,9]] => [7,5] => ([(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12) => 14
[[1,2,3,4,5,8,9,10,11,12],[6,7]] => [6,6] => ([(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12) => 12
[[1,2,3,4,5,6,9,10,11,12],[7,8]] => [7,5] => ([(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12) => 14
[[1,2,3,4,5,7,8,9,10,11,12],[6]] => [6,6] => ([(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12) => 12
[[1,2,3,4,5,6,7,8,9,10,12],[11]] => [11,1] => ([(0,11),(1,11),(2,11),(3,11),(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12) => 22
[[1,2,3,4,5,6,7,8,9,11,12],[10]] => [10,2] => ([(1,11),(2,11),(3,11),(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12) => 19
[[1,2,3,4,5,6,8,9,10,11,12],[7]] => [7,5] => ([(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12) => 14
[[1,2,5,6,7,8],[3,4,9]] => [3,6] => ([(5,8),(6,8),(7,8)],9) => 9
[[1,2,5,6,7,8],[3,4],[9]] => [3,6] => ([(5,8),(6,8),(7,8)],9) => 9
[[1,4,5,6,7,8],[2],[3],[9]] => [3,6] => ([(5,8),(6,8),(7,8)],9) => 9
[[1,2,3,7,8],[4,5,6,9]] => [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9) => 9
[[1,2,3,7,8],[4,5,6],[9]] => [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9) => 9
[[1,3,6,7,8],[2,5],[4,9]] => [2,2,5] => ([(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9) => 10
[[1,3,6,7,8],[2,5],[4],[9]] => [2,2,5] => ([(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9) => 10
[[1,5,6,7,8],[2],[3],[4],[9]] => [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9) => 9
[[1,6,7,8],[2],[3],[4],[5],[9]] => [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 10
[[1,7,8],[2],[3],[4],[5],[6],[9]] => [6,3] => ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 11
[[1,2,5,6,7,8,9],[3,4,10]] => [3,7] => ([(6,9),(7,9),(8,9)],10) => 10
[[1,2,5,6,7,8,9],[3,4],[10]] => [3,7] => ([(6,9),(7,9),(8,9)],10) => 10
[[1,4,5,6,7,8,9],[2],[3],[10]] => [3,7] => ([(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,7,8,9],[4,5,6,10]] => [4,6] => ([(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,7,8,9],[4,5,6],[10]] => [4,6] => ([(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,3,6,7,8,9],[2,5],[4,10]] => [2,2,6] => ([(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10) => 10
[[1,3,6,7,8,9],[2,5],[4],[10]] => [2,2,6] => ([(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10) => 10
[[1,5,6,7,8,9],[2],[3],[4],[10]] => [4,6] => ([(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,4,9],[5,6,7,8],[10]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,6,7,8,9],[2],[3],[4],[5],[10]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,7,8,9],[2],[3],[4],[5],[6],[10]] => [6,4] => ([(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 11
[[1,8,9],[2],[3],[4],[5],[6],[7],[10]] => [7,3] => ([(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 14
[[1,2,3,6,7,8,9],[4,5]] => [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9) => 9
[[1,2,5,6,7,8,9],[3],[4]] => [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9) => 9
[[1,2,3,4,8,9],[5,6,7]] => [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 10
[[1,2,6,7,8,9],[3],[4],[5]] => [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 10
[[1,2,7,8,9],[3],[4],[5],[6]] => [6,3] => ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 11
[[1,2,8,9],[3],[4],[5],[6],[7]] => [7,2] => ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 14
[[1,2],[3,8],[4],[5],[6],[7],[9]] => [7,2] => ([(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 14
[[1,2,3,6,7,8,9,10],[4,5]] => [4,6] => ([(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,5,6,7,8,9,10],[3],[4]] => [4,6] => ([(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,3,4,8,9,10],[5,6,7]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,6,7,8,9,10],[3],[4],[5]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,7,8,9,10],[3],[4],[5],[6]] => [6,4] => ([(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 11
[[1,2,8,9,10],[3],[4],[5],[6],[7]] => [7,3] => ([(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 14
[[1,2,9,10],[3],[4],[5],[6],[7],[8]] => [8,2] => ([(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 15
[[1,2],[3,9],[4],[5],[6],[7],[8],[10]] => [8,2] => ([(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 15
[[1,2,3,4,7,8,9],[5,6]] => [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 10
[[1,2,3,4,7,8],[5,6],[9]] => [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 10
[[1,2,5,6,7,8],[3],[4],[9]] => [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9) => 9
[[1,2,7,8],[3],[4],[5],[6],[9]] => [6,3] => ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 11
[[1,2,4,5,6,7,8,9],[3],[10]] => [3,7] => ([(6,9),(7,9),(8,9)],10) => 10
[[1,2,6,7,8,9],[3],[4],[5],[10]] => [5,5] => ([(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 10
[[1,2,8,9],[3],[4],[5],[6],[7],[10]] => [7,3] => ([(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9)],10) => 14
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Ramsey number of a graph.
This is the smallest integer $n$ such that every two-colouring of the edges of the complete graph $K_n$ contains a (not necessarily induced) monochromatic copy of the given graph. [1]
Thus, the Ramsey number of the complete graph $K_n$ is the ordinary Ramsey number $R(n,n)$. Very few of these numbers are known, in particular, it is only known that $43\leq R(5,5)\leq 48$. [2,3,4,5]
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
valley composition
Description
The composition corresponding to the valley set of a standard tableau.
Let $T$ be a standard tableau of size $n$.
An entry $i$ of $T$ is a descent if $i+1$ is in a lower row (in English notation), otherwise $i$ is an ascent.
An entry $2 \leq i \leq n-1$ is a valley if $i-1$ is a descent and $i$ is an ascent.
This map returns the composition $c_1,\dots,c_k$ of $n$ such that $\{c_1, c_1+c_2,\dots, c_1+\dots+c_k\}$ is the valley set of $T$.