Identifier
Values
[1] => ([],1) => [] => 0
[1,1] => ([(0,1)],2) => [1] => 0
[2] => ([],2) => [] => 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3) => [3] => 1
[1,2] => ([(1,2)],3) => [1] => 0
[2,1] => ([(0,2),(1,2)],3) => [1,1] => 0
[3] => ([],3) => [] => 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4) => [3] => 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 1
[1,3] => ([(2,3)],4) => [1] => 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => 1
[2,2] => ([(1,3),(2,3)],4) => [1,1] => 0
[3,1] => ([(0,3),(1,3),(2,3)],4) => [1,1,1] => 0
[4] => ([],4) => [] => 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6,1] => 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5) => [3] => 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [8] => 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => 1
[1,4] => ([(3,4)],5) => [1] => 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [9] => 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => 1
[2,3] => ([(2,4),(3,4)],5) => [1,1] => 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 1
[3,2] => ([(1,4),(2,4),(3,4)],5) => [1,1,1] => 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => 0
[5] => ([],5) => [] => 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10,1] => 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [12] => 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6) => [3] => 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8,1] => 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => 1
[1,5] => ([(4,5)],6) => [1] => 0
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9,1] => 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [11] => 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => 1
[2,4] => ([(3,5),(4,5)],6) => [1,1] => 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [12] => 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => 1
[3,3] => ([(2,5),(3,5),(4,5)],6) => [1,1,1] => 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => 0
[6] => ([],6) => [] => 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10,1] => 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10,1,1] => 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7) => [3] => 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1] => 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => [3,1] => 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10,1] => 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
[1,6] => ([(5,6)],7) => [1] => 0
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1,1] => 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5] => 1
[2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 1
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11,1] => 1
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 1
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
[2,5] => ([(4,6),(5,6)],7) => [1,1] => 0
[3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 1
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 1
[3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 1
[3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
[3,4] => ([(3,6),(4,6),(5,6)],7) => [1,1,1] => 0
[4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 1
[4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => 0
[5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 1
[5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => 0
[6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => 0
>>> Load all 102 entries. <<<
[7] => ([],7) => [] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of lower covers of a partition in dominance order.
According to [1], Corollary 2.4, the maximum number of elements one element (apparently for $n\neq 2$) can cover is
$$ \frac{1}{2}(\sqrt{1+8n}-3) $$
and an element which covers this number of elements is given by $(c+i,c,c-1,\dots,3,2,1)$, where $1\leq i\leq c+2$.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.