Identifier
- St000529: Binary words ⟶ ℤ
Values
0 => 1
1 => 1
00 => 1
01 => 2
10 => 2
11 => 1
000 => 1
001 => 3
010 => 5
011 => 3
100 => 3
101 => 5
110 => 3
111 => 1
0000 => 1
0001 => 4
0010 => 9
0011 => 6
0100 => 9
0101 => 16
0110 => 11
0111 => 4
1000 => 4
1001 => 11
1010 => 16
1011 => 9
1100 => 6
1101 => 9
1110 => 4
1111 => 1
00000 => 1
00001 => 5
00010 => 14
00011 => 10
00100 => 19
00101 => 35
00110 => 26
00111 => 10
01000 => 14
01001 => 40
01010 => 61
01011 => 35
01100 => 26
01101 => 40
01110 => 19
01111 => 5
10000 => 5
10001 => 19
10010 => 40
10011 => 26
10100 => 35
10101 => 61
10110 => 40
10111 => 14
11000 => 10
11001 => 26
11010 => 35
11011 => 19
11100 => 10
11101 => 14
11110 => 5
11111 => 1
000000 => 1
000001 => 6
000010 => 20
000011 => 15
000100 => 34
000101 => 64
000110 => 50
000111 => 20
001000 => 34
001001 => 99
001010 => 155
001011 => 90
001100 => 71
001101 => 111
001110 => 55
001111 => 15
010000 => 20
010001 => 78
010010 => 169
010011 => 111
010100 => 155
010101 => 272
010110 => 181
010111 => 64
011000 => 50
011001 => 132
011010 => 181
011011 => 99
011100 => 55
011101 => 78
011110 => 29
011111 => 6
100000 => 6
100001 => 29
100010 => 78
100011 => 55
100100 => 99
100101 => 181
100110 => 132
>>> Load all 254 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of permutations whose descent word is the given binary word.
This is the sizes of the preimages of the map Mp00109descent word.
This is the sizes of the preimages of the map Mp00109descent word.
Code
from collections import defaultdict
def word(pi):
w = [0]*(len(pi)-1)
for i in pi.descents():
w[i] = 1
return Words([0,1])(w)
@cached_function
def preimages(n):
D = defaultdict(int)
for pi in Permutations(n):
D[word(pi)] += 1
return D
def statistic(word):
return preimages(len(word)+Integer(1))[word]
Created
Jun 08, 2016 at 13:19 by Christian Stump
Updated
Jun 08, 2016 at 13:19 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!