Your data matches 8 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000529: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => 1
1 => 1
00 => 1
01 => 2
10 => 2
11 => 1
000 => 1
001 => 3
010 => 5
011 => 3
100 => 3
101 => 5
110 => 3
111 => 1
0000 => 1
0001 => 4
0010 => 9
0011 => 6
0100 => 9
0101 => 16
0110 => 11
0111 => 4
1000 => 4
1001 => 11
1010 => 16
1011 => 9
1100 => 6
1101 => 9
1110 => 4
1111 => 1
00000 => 1
00001 => 5
00010 => 14
00011 => 10
00100 => 19
00101 => 35
00110 => 26
00111 => 10
01000 => 14
01001 => 40
01010 => 61
01011 => 35
01100 => 26
01101 => 40
01110 => 19
01111 => 5
10000 => 5
10001 => 19
10010 => 40
10011 => 26
Description
The number of permutations whose descent word is the given binary word. This is the sizes of the preimages of the map [[Mp00109]].
Mp00178: Binary words to compositionInteger compositions
St000277: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => 1
1 => [1,1] => 1
00 => [3] => 1
01 => [2,1] => 2
10 => [1,2] => 2
11 => [1,1,1] => 1
000 => [4] => 1
001 => [3,1] => 3
010 => [2,2] => 5
011 => [2,1,1] => 3
100 => [1,3] => 3
101 => [1,2,1] => 5
110 => [1,1,2] => 3
111 => [1,1,1,1] => 1
0000 => [5] => 1
0001 => [4,1] => 4
0010 => [3,2] => 9
0011 => [3,1,1] => 6
0100 => [2,3] => 9
0101 => [2,2,1] => 16
0110 => [2,1,2] => 11
0111 => [2,1,1,1] => 4
1000 => [1,4] => 4
1001 => [1,3,1] => 11
1010 => [1,2,2] => 16
1011 => [1,2,1,1] => 9
1100 => [1,1,3] => 6
1101 => [1,1,2,1] => 9
1110 => [1,1,1,2] => 4
1111 => [1,1,1,1,1] => 1
00000 => [6] => 1
00001 => [5,1] => 5
00010 => [4,2] => 14
00011 => [4,1,1] => 10
00100 => [3,3] => 19
00101 => [3,2,1] => 35
00110 => [3,1,2] => 26
00111 => [3,1,1,1] => 10
01000 => [2,4] => 14
01001 => [2,3,1] => 40
01010 => [2,2,2] => 61
01011 => [2,2,1,1] => 35
01100 => [2,1,3] => 26
01101 => [2,1,2,1] => 40
01110 => [2,1,1,2] => 19
01111 => [2,1,1,1,1] => 5
10000 => [1,5] => 5
10001 => [1,4,1] => 19
10010 => [1,3,2] => 40
10011 => [1,3,1,1] => 26
Description
The number of ribbon shaped standard tableaux. A ribbon is a connected skew shape which does not contain a $2\times 2$ square. The set of ribbon shapes are therefore in bijection with integer compositons, the parts of the composition specify the row lengths. This statistic records the number of standard tableaux of the given shape. This is also the size of the preimage of the map 'descent composition' [[Mp00071]] from permutations to integer compositions: reading a tableau from bottom to top we obtain a permutation whose descent set is as prescribed. For a composition $c=c_1,\dots,c_k$ of $n$, the number of ribbon shaped standard tableaux equals $$ \sum_d (-1)^{k-\ell} \binom{n}{d_1, d_2, \dots, d_\ell}, $$ where the sum is over all coarsenings of $c$ obtained by replacing consecutive summands by their sum, see [sec 14.4, 1]
Matching statistic: St000100
Mp00178: Binary words to compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00185: Skew partitions cell posetPosets
St000100: Posets ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 56%
Values
0 => [2] => [[2],[]]
=> ([(0,1)],2)
=> 1
1 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> 1
00 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 1
01 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> 2
10 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> 2
11 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 1
000 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
001 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
010 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
011 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
100 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
101 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
110 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
111 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
0000 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
0001 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
0010 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 9
0011 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
0100 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> 9
0101 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 16
0110 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 11
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
1000 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 4
1001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 11
1010 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> 16
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 9
1100 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 6
1101 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> 9
1110 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 4
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
00000 => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
00001 => [5,1] => [[5,5],[4]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
00010 => [4,2] => [[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> 14
00011 => [4,1,1] => [[4,4,4],[3,3]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 10
00100 => [3,3] => [[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> 19
00101 => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> 35
00110 => [3,1,2] => [[4,3,3],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> 26
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 10
01000 => [2,4] => [[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> 14
01001 => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 40
01010 => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> 61
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> 35
01100 => [2,1,3] => [[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> 26
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 40
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> 19
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
10000 => [1,5] => [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 5
10001 => [1,4,1] => [[4,4,1],[3]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> 19
10010 => [1,3,2] => [[4,3,1],[2]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> 40
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> 26
0000001 => [7,1] => [[7,7],[6]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 7
0000010 => [6,2] => [[7,6],[5]]
=> ?
=> ? = 27
0000011 => [6,1,1] => [[6,6,6],[5,5]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 21
0000100 => [5,3] => [[7,5],[4]]
=> ?
=> ? = 55
0000101 => [5,2,1] => [[6,6,5],[5,4]]
=> ?
=> ? = 105
0000110 => [5,1,2] => [[6,5,5],[4,4]]
=> ?
=> ? = 85
0000111 => [5,1,1,1] => [[5,5,5,5],[4,4,4]]
=> ([(0,5),(1,6),(2,7),(3,7),(4,3),(5,4),(6,2)],8)
=> ? = 35
0001000 => [4,4] => [[7,4],[3]]
=> ([(0,5),(1,6),(1,7),(3,7),(4,2),(5,3),(6,4)],8)
=> ? = 69
0001001 => [4,3,1] => [[6,6,4],[5,3]]
=> ([(0,7),(1,4),(2,3),(2,6),(3,7),(4,5),(5,6)],8)
=> ? = 203
0001010 => [4,2,2] => [[6,5,4],[4,3]]
=> ([(0,6),(0,7),(1,4),(2,3),(2,6),(4,5),(5,7)],8)
=> ? = 323
0001011 => [4,2,1,1] => [[5,5,5,4],[4,4,3]]
=> ([(0,6),(0,7),(1,3),(2,4),(3,7),(4,5),(5,6)],8)
=> ? = 189
0001100 => [4,1,3] => [[6,4,4],[3,3]]
=> ([(0,6),(1,4),(1,5),(3,7),(4,7),(5,2),(6,3)],8)
=> ? = 155
0001101 => [4,1,2,1] => [[5,5,4,4],[4,3,3]]
=> ([(0,6),(1,4),(2,3),(2,6),(3,7),(4,5),(5,7)],8)
=> ? = 245
0001110 => [4,1,1,2] => [[5,4,4,4],[3,3,3]]
=> ([(0,6),(1,2),(1,5),(3,7),(4,7),(5,4),(6,3)],8)
=> ? = 125
0001111 => [4,1,1,1,1] => [[4,4,4,4,4],[3,3,3,3]]
=> ([(0,5),(1,6),(2,7),(3,7),(4,3),(5,4),(6,2)],8)
=> ? = 35
0010000 => [3,5] => [[7,3],[2]]
=> ?
=> ? = 55
0010001 => [3,4,1] => [[6,6,3],[5,2]]
=> ([(0,6),(1,3),(2,4),(2,7),(3,7),(4,5),(5,6)],8)
=> ? = 217
0010010 => [3,3,2] => [[6,5,3],[4,2]]
=> ([(0,5),(1,4),(1,7),(2,3),(2,6),(4,6),(5,7)],8)
=> ? = 477
0010011 => [3,3,1,1] => [[5,5,5,3],[4,4,2]]
=> ([(0,3),(1,5),(2,4),(2,6),(3,7),(4,7),(5,6)],8)
=> ? = 315
0010100 => [3,2,3] => [[6,4,3],[3,2]]
=> ([(0,6),(0,7),(1,3),(2,4),(2,6),(3,7),(4,5)],8)
=> ? = 449
0010101 => [3,2,2,1] => [[5,5,4,3],[4,3,2]]
=> ([(0,5),(1,6),(1,7),(2,5),(2,6),(3,4),(4,7)],8)
=> ? = 791
0010110 => [3,2,1,2] => [[5,4,4,3],[3,3,2]]
=> ([(0,6),(0,7),(1,5),(2,3),(2,4),(4,6),(5,7)],8)
=> ? = 531
0010111 => [3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]]
=> ([(0,6),(0,7),(1,3),(2,4),(3,7),(4,5),(5,6)],8)
=> ? = 189
0011000 => [3,1,4] => [[6,3,3],[2,2]]
=> ?
=> ? = 155
0011001 => [3,1,3,1] => [[5,5,3,3],[4,2,2]]
=> ([(0,6),(1,4),(2,3),(2,5),(3,7),(4,7),(5,6)],8)
=> ? = 413
0011010 => [3,1,2,2] => [[5,4,3,3],[3,2,2]]
=> ([(0,5),(1,4),(1,6),(2,3),(2,6),(4,7),(5,7)],8)
=> ? = 573
0011011 => [3,1,2,1,1] => [[4,4,4,3,3],[3,3,2,2]]
=> ([(0,3),(1,5),(2,4),(2,6),(3,7),(4,7),(5,6)],8)
=> ? = 315
0011100 => [3,1,1,3] => [[5,3,3,3],[2,2,2]]
=> ([(0,4),(1,5),(1,6),(3,7),(4,7),(5,2),(6,3)],8)
=> ? = 181
0011101 => [3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]]
=> ([(0,6),(1,3),(2,4),(2,6),(3,7),(4,5),(5,7)],8)
=> ? = 259
0011110 => [3,1,1,1,2] => [[4,3,3,3,3],[2,2,2,2]]
=> ?
=> ? = 99
0011111 => [3,1,1,1,1,1] => [[3,3,3,3,3,3],[2,2,2,2,2]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 21
0100000 => [2,6] => [[7,2],[1]]
=> ?
=> ? = 27
0100001 => [2,5,1] => [[6,6,2],[5,1]]
=> ?
=> ? = 133
0100010 => [2,4,2] => [[6,5,2],[4,1]]
=> ([(0,6),(1,4),(1,6),(2,3),(2,7),(4,5),(5,7)],8)
=> ? = 365
0100011 => [2,4,1,1] => [[5,5,5,2],[4,4,1]]
=> ([(0,6),(1,3),(2,4),(2,6),(3,7),(4,5),(5,7)],8)
=> ? = 259
0100100 => [2,3,3] => [[6,4,2],[3,1]]
=> ([(0,6),(1,4),(1,7),(2,3),(2,6),(3,7),(4,5)],8)
=> ? = 477
0100101 => [2,3,2,1] => [[5,5,4,2],[4,3,1]]
=> ([(0,5),(1,6),(2,5),(2,7),(3,4),(3,6),(4,7)],8)
=> ? = 875
0100110 => [2,3,1,2] => [[5,4,4,2],[3,3,1]]
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(4,7),(5,7)],8)
=> ? = 643
0100111 => [2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]]
=> ([(0,6),(1,4),(2,3),(2,6),(3,7),(4,5),(5,7)],8)
=> ? = 245
0101000 => [2,2,4] => [[6,3,2],[2,1]]
=> ?
=> ? = 323
0101001 => [2,2,3,1] => [[5,5,3,2],[4,2,1]]
=> ([(0,7),(1,5),(2,5),(2,6),(3,4),(3,6),(4,7)],8)
=> ? = 917
0101010 => [2,2,2,2] => [[5,4,3,2],[3,2,1]]
=> ([(0,6),(1,5),(1,6),(2,5),(2,7),(3,4),(3,7)],8)
=> ? = 1385
0101011 => [2,2,2,1,1] => [[4,4,4,3,2],[3,3,2,1]]
=> ([(0,5),(1,6),(1,7),(2,5),(2,6),(3,4),(4,7)],8)
=> ? = 791
0101100 => [2,2,1,3] => [[5,3,3,2],[2,2,1]]
=> ([(0,6),(1,6),(1,7),(2,3),(2,4),(3,7),(4,5)],8)
=> ? = 573
0101101 => [2,2,1,2,1] => [[4,4,3,3,2],[3,2,2,1]]
=> ([(0,5),(1,6),(2,5),(2,7),(3,4),(3,6),(4,7)],8)
=> ? = 875
0101110 => [2,2,1,1,2] => [[4,3,3,3,2],[2,2,2,1]]
=> ([(0,6),(1,6),(1,7),(2,3),(2,4),(4,5),(5,7)],8)
=> ? = 407
0101111 => [2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]]
=> ([(0,3),(1,6),(2,6),(2,7),(3,5),(4,7),(5,4)],8)
=> ? = 105
0110000 => [2,1,5] => [[6,2,2],[1,1]]
=> ?
=> ? = 85
0110001 => [2,1,4,1] => [[5,5,2,2],[4,1,1]]
=> ?
=> ? = 315
0110010 => [2,1,3,2] => [[5,4,2,2],[3,1,1]]
=> ([(0,6),(1,3),(1,7),(2,4),(2,5),(4,6),(5,7)],8)
=> ? = 643
Description
The number of linear extensions of a poset.
Mp00178: Binary words to compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
St001595: Skew partitions ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 53%
Values
0 => [2] => [[2],[]]
=> 1
1 => [1,1] => [[1,1],[]]
=> 1
00 => [3] => [[3],[]]
=> 1
01 => [2,1] => [[2,2],[1]]
=> 2
10 => [1,2] => [[2,1],[]]
=> 2
11 => [1,1,1] => [[1,1,1],[]]
=> 1
000 => [4] => [[4],[]]
=> 1
001 => [3,1] => [[3,3],[2]]
=> 3
010 => [2,2] => [[3,2],[1]]
=> 5
011 => [2,1,1] => [[2,2,2],[1,1]]
=> 3
100 => [1,3] => [[3,1],[]]
=> 3
101 => [1,2,1] => [[2,2,1],[1]]
=> 5
110 => [1,1,2] => [[2,1,1],[]]
=> 3
111 => [1,1,1,1] => [[1,1,1,1],[]]
=> 1
0000 => [5] => [[5],[]]
=> 1
0001 => [4,1] => [[4,4],[3]]
=> 4
0010 => [3,2] => [[4,3],[2]]
=> 9
0011 => [3,1,1] => [[3,3,3],[2,2]]
=> 6
0100 => [2,3] => [[4,2],[1]]
=> 9
0101 => [2,2,1] => [[3,3,2],[2,1]]
=> 16
0110 => [2,1,2] => [[3,2,2],[1,1]]
=> 11
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> 4
1000 => [1,4] => [[4,1],[]]
=> 4
1001 => [1,3,1] => [[3,3,1],[2]]
=> 11
1010 => [1,2,2] => [[3,2,1],[1]]
=> 16
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> 9
1100 => [1,1,3] => [[3,1,1],[]]
=> 6
1101 => [1,1,2,1] => [[2,2,1,1],[1]]
=> 9
1110 => [1,1,1,2] => [[2,1,1,1],[]]
=> 4
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> 1
00000 => [6] => [[6],[]]
=> 1
00001 => [5,1] => [[5,5],[4]]
=> 5
00010 => [4,2] => [[5,4],[3]]
=> 14
00011 => [4,1,1] => [[4,4,4],[3,3]]
=> 10
00100 => [3,3] => [[5,3],[2]]
=> 19
00101 => [3,2,1] => [[4,4,3],[3,2]]
=> 35
00110 => [3,1,2] => [[4,3,3],[2,2]]
=> 26
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> 10
01000 => [2,4] => [[5,2],[1]]
=> 14
01001 => [2,3,1] => [[4,4,2],[3,1]]
=> 40
01010 => [2,2,2] => [[4,3,2],[2,1]]
=> 61
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> 35
01100 => [2,1,3] => [[4,2,2],[1,1]]
=> 26
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> 40
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> 19
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> 5
10000 => [1,5] => [[5,1],[]]
=> 5
10001 => [1,4,1] => [[4,4,1],[3]]
=> 19
10010 => [1,3,2] => [[4,3,1],[2]]
=> 40
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> 26
0000000 => [8] => [[8],[]]
=> ? = 1
0000001 => [7,1] => [[7,7],[6]]
=> ? = 7
0000010 => [6,2] => [[7,6],[5]]
=> ? = 27
0000011 => [6,1,1] => [[6,6,6],[5,5]]
=> ? = 21
0000100 => [5,3] => [[7,5],[4]]
=> ? = 55
0000101 => [5,2,1] => [[6,6,5],[5,4]]
=> ? = 105
0000110 => [5,1,2] => [[6,5,5],[4,4]]
=> ? = 85
0000111 => [5,1,1,1] => [[5,5,5,5],[4,4,4]]
=> ? = 35
0001000 => [4,4] => [[7,4],[3]]
=> ? = 69
0001001 => [4,3,1] => [[6,6,4],[5,3]]
=> ? = 203
0001010 => [4,2,2] => [[6,5,4],[4,3]]
=> ? = 323
0001011 => [4,2,1,1] => [[5,5,5,4],[4,4,3]]
=> ? = 189
0001100 => [4,1,3] => [[6,4,4],[3,3]]
=> ? = 155
0001101 => [4,1,2,1] => [[5,5,4,4],[4,3,3]]
=> ? = 245
0001110 => [4,1,1,2] => [[5,4,4,4],[3,3,3]]
=> ? = 125
0001111 => [4,1,1,1,1] => [[4,4,4,4,4],[3,3,3,3]]
=> ? = 35
0010000 => [3,5] => [[7,3],[2]]
=> ? = 55
0010001 => [3,4,1] => [[6,6,3],[5,2]]
=> ? = 217
0010010 => [3,3,2] => [[6,5,3],[4,2]]
=> ? = 477
0010011 => [3,3,1,1] => [[5,5,5,3],[4,4,2]]
=> ? = 315
0010100 => [3,2,3] => [[6,4,3],[3,2]]
=> ? = 449
0010101 => [3,2,2,1] => [[5,5,4,3],[4,3,2]]
=> ? = 791
0010110 => [3,2,1,2] => [[5,4,4,3],[3,3,2]]
=> ? = 531
0010111 => [3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]]
=> ? = 189
0011000 => [3,1,4] => [[6,3,3],[2,2]]
=> ? = 155
0011001 => [3,1,3,1] => [[5,5,3,3],[4,2,2]]
=> ? = 413
0011010 => [3,1,2,2] => [[5,4,3,3],[3,2,2]]
=> ? = 573
0011011 => [3,1,2,1,1] => [[4,4,4,3,3],[3,3,2,2]]
=> ? = 315
0011100 => [3,1,1,3] => [[5,3,3,3],[2,2,2]]
=> ? = 181
0011101 => [3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]]
=> ? = 259
0011110 => [3,1,1,1,2] => [[4,3,3,3,3],[2,2,2,2]]
=> ? = 99
0011111 => [3,1,1,1,1,1] => [[3,3,3,3,3,3],[2,2,2,2,2]]
=> ? = 21
0100000 => [2,6] => [[7,2],[1]]
=> ? = 27
0100001 => [2,5,1] => [[6,6,2],[5,1]]
=> ? = 133
0100010 => [2,4,2] => [[6,5,2],[4,1]]
=> ? = 365
0100011 => [2,4,1,1] => [[5,5,5,2],[4,4,1]]
=> ? = 259
0100100 => [2,3,3] => [[6,4,2],[3,1]]
=> ? = 477
0100101 => [2,3,2,1] => [[5,5,4,2],[4,3,1]]
=> ? = 875
0100110 => [2,3,1,2] => [[5,4,4,2],[3,3,1]]
=> ? = 643
0100111 => [2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]]
=> ? = 245
0101000 => [2,2,4] => [[6,3,2],[2,1]]
=> ? = 323
0101001 => [2,2,3,1] => [[5,5,3,2],[4,2,1]]
=> ? = 917
0101010 => [2,2,2,2] => [[5,4,3,2],[3,2,1]]
=> ? = 1385
0101011 => [2,2,2,1,1] => [[4,4,4,3,2],[3,3,2,1]]
=> ? = 791
0101100 => [2,2,1,3] => [[5,3,3,2],[2,2,1]]
=> ? = 573
0101101 => [2,2,1,2,1] => [[4,4,3,3,2],[3,2,2,1]]
=> ? = 875
0101110 => [2,2,1,1,2] => [[4,3,3,3,2],[2,2,2,1]]
=> ? = 407
0101111 => [2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]]
=> ? = 105
0110000 => [2,1,5] => [[6,2,2],[1,1]]
=> ? = 85
0110001 => [2,1,4,1] => [[5,5,2,2],[4,1,1]]
=> ? = 315
Description
The number of standard Young tableaux of the skew partition.
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000530: Permutations ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 52%
Values
0 => [2] => [1,1,0,0]
=> [2,1] => 1
1 => [1,1] => [1,0,1,0]
=> [1,2] => 1
00 => [3] => [1,1,1,0,0,0]
=> [3,2,1] => 1
01 => [2,1] => [1,1,0,0,1,0]
=> [2,1,3] => 2
10 => [1,2] => [1,0,1,1,0,0]
=> [1,3,2] => 2
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 5
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 3
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 9
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 6
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 9
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 16
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 11
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 4
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 4
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 11
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 16
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 9
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 6
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 9
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 4
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => 14
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,3,2,1,5,6] => 10
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => 19
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1,5,4,6] => 35
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,2,1,4,6,5] => 26
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6] => 10
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => 14
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,4,3,6] => 40
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => 61
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 35
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,5,4] => 26
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 40
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 19
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 5
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 5
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => 19
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => 40
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => 26
000000 => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? = 1
000001 => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 6
000010 => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => ? = 20
000011 => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,4,3,2,1,6,7] => ? = 15
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? = 34
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [4,3,2,1,6,5,7] => ? = 64
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,3,2,1,5,7,6] => ? = 50
000111 => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [4,3,2,1,5,6,7] => ? = 20
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ? = 34
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,2,1,6,5,4,7] => ? = 99
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,2,1,5,4,7,6] => ? = 155
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [3,2,1,5,4,6,7] => ? = 90
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? = 71
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [3,2,1,4,6,5,7] => ? = 111
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,7,6] => ? = 55
001111 => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7] => ? = 15
010000 => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ? = 20
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => ? = 78
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => ? = 169
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => ? = 111
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 155
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => ? = 272
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => ? = 181
010111 => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => ? = 64
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => ? = 50
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => ? = 132
011010 => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => ? = 181
011011 => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => ? = 99
011100 => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => ? = 55
011101 => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => ? = 78
011110 => [2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => ? = 29
011111 => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => ? = 6
100000 => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 6
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 29
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 78
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 55
0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => ? = 1
0000001 => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => ? = 7
0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,5,4,3,2,1,8,7] => ? = 27
0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [6,5,4,3,2,1,7,8] => ? = 21
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [5,4,3,2,1,8,7,6] => ? = 55
0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [5,4,3,2,1,7,6,8] => ? = 105
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> [5,4,3,2,1,6,8,7] => ? = 85
0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [5,4,3,2,1,6,7,8] => ? = 35
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [4,3,2,1,8,7,6,5] => ? = 69
0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [4,3,2,1,7,6,5,8] => ? = 203
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [4,3,2,1,6,5,8,7] => ? = 323
0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [4,3,2,1,6,5,7,8] => ? = 189
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [4,3,2,1,5,8,7,6] => ? = 155
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [4,3,2,1,5,7,6,8] => ? = 245
Description
The number of permutations with the same descent word as the given permutation. The descent word of a permutation is the binary word given by [[Mp00109]]. For a given permutation, this statistic is the number of permutations with the same descent word, so the number of elements in the fiber of the map [[Mp00109]] containing a given permutation. This statistic appears as ''up-down analysis'' in statistical applications in genetics, see [1] and the references therein.
Matching statistic: St000001
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St000001: Permutations ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 18%
Values
0 => [2] => [1,1,0,0]
=> [2,3,1] => 1
1 => [1,1] => [1,0,1,0]
=> [3,1,2] => 1
00 => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 1
01 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2
10 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2
11 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 9
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 11
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 4
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 4
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 11
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 16
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 9
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 6
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 9
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 4
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => 14
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => 10
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 10
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 14
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 35
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 26
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 40
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 19
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => 5
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 5
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 19
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 40
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 26
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 35
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 61
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 40
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 14
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 10
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 26
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 35
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 19
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => 10
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => 14
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => 5
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => 1
000000 => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 1
000001 => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => ? = 6
000010 => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 20
000011 => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [2,3,4,5,8,1,6,7] => ? = 15
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 34
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [2,3,4,6,1,8,5,7] => ? = 64
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [2,3,4,7,1,5,8,6] => ? = 50
000111 => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [2,3,4,8,1,5,6,7] => ? = 20
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [2,3,5,1,6,7,8,4] => ? = 34
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [2,3,5,1,6,8,4,7] => ? = 99
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [2,3,5,1,7,4,8,6] => ? = 155
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [2,3,5,1,8,4,6,7] => ? = 90
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [2,3,6,1,4,7,8,5] => ? = 71
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [2,3,6,1,4,8,5,7] => ? = 111
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [2,3,7,1,4,5,8,6] => ? = 55
001111 => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [2,3,8,1,4,5,6,7] => ? = 15
010000 => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,1,5,6,7,8,3] => ? = 20
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,4,1,5,6,8,3,7] => ? = 78
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,4,1,5,7,3,8,6] => ? = 169
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,4,1,5,8,3,6,7] => ? = 111
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 155
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,8,5,7] => ? = 272
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,4,1,7,3,5,8,6] => ? = 181
010111 => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,4,1,8,3,5,6,7] => ? = 64
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,5,1,3,6,7,8,4] => ? = 50
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,5,1,3,6,8,4,7] => ? = 132
011010 => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,7,4,8,6] => ? = 181
Description
The number of reduced words for a permutation. This is the number of ways to write a permutation as a minimal length product of simple transpositions. E.g., there are two reduced words for the permutation $[3,2,1]$, which are $(1,2)(2,3)(1,2) = (2,3)(1,2)(2,3)$.
Matching statistic: St000255
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St000255: Permutations ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 18%
Values
0 => [2] => [1,1,0,0]
=> [2,3,1] => 1
1 => [1,1] => [1,0,1,0]
=> [3,1,2] => 1
00 => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 1
01 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2
10 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2
11 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 9
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 11
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 4
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 4
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 11
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 16
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 9
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 6
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 9
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 4
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => 14
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => 10
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 10
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 14
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 35
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 26
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 40
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 19
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => 5
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 5
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 19
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 40
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 26
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 35
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 61
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 40
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 14
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 10
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 26
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 35
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 19
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => 10
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => 14
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => 5
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 1
000000 => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 1
000001 => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => ? = 6
000010 => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 20
000011 => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [2,3,4,5,8,1,6,7] => ? = 15
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 34
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [2,3,4,6,1,8,5,7] => ? = 64
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [2,3,4,7,1,5,8,6] => ? = 50
000111 => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [2,3,4,8,1,5,6,7] => ? = 20
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [2,3,5,1,6,7,8,4] => ? = 34
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [2,3,5,1,6,8,4,7] => ? = 99
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [2,3,5,1,7,4,8,6] => ? = 155
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [2,3,5,1,8,4,6,7] => ? = 90
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [2,3,6,1,4,7,8,5] => ? = 71
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [2,3,6,1,4,8,5,7] => ? = 111
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [2,3,7,1,4,5,8,6] => ? = 55
001111 => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [2,3,8,1,4,5,6,7] => ? = 15
010000 => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,1,5,6,7,8,3] => ? = 20
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,4,1,5,6,8,3,7] => ? = 78
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,4,1,5,7,3,8,6] => ? = 169
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,4,1,5,8,3,6,7] => ? = 111
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 155
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,8,5,7] => ? = 272
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,4,1,7,3,5,8,6] => ? = 181
010111 => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,4,1,8,3,5,6,7] => ? = 64
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,5,1,3,6,7,8,4] => ? = 50
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,5,1,3,6,8,4,7] => ? = 132
Description
The number of reduced Kogan faces with the permutation as type. This is equivalent to finding the number of ways to represent the permutation $\pi \in S_{n+1}$ as a reduced subword of $s_n (s_{n-1} s_n) (s_{n-2} s_{n-1} s_n) \dotsm (s_1 \dotsm s_n)$, or the number of reduced pipe dreams for $\pi$.
Matching statistic: St000880
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St000880: Permutations ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 15%
Values
0 => [2] => [1,1,0,0]
=> [2,3,1] => 1
1 => [1,1] => [1,0,1,0]
=> [3,1,2] => 1
00 => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 1
01 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2
10 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2
11 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 3
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 9
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 6
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 9
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 16
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 11
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 4
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 4
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 11
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 16
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 9
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 6
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 9
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 4
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? = 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 14
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ? = 10
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 19
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 35
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 26
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 10
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 14
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 40
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 61
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 35
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 26
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 40
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 19
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => ? = 5
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 5
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 19
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 40
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 26
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 35
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 61
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 40
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 14
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 10
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 26
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 35
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 19
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ? = 10
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 14
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ? = 5
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 1
000000 => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 1
000001 => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => ? = 6
000010 => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 20
000011 => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [2,3,4,5,8,1,6,7] => ? = 15
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 34
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [2,3,4,6,1,8,5,7] => ? = 64
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [2,3,4,7,1,5,8,6] => ? = 50
000111 => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [2,3,4,8,1,5,6,7] => ? = 20
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [2,3,5,1,6,7,8,4] => ? = 34
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [2,3,5,1,6,8,4,7] => ? = 99
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [2,3,5,1,7,4,8,6] => ? = 155
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [2,3,5,1,8,4,6,7] => ? = 90
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [2,3,6,1,4,7,8,5] => ? = 71
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [2,3,6,1,4,8,5,7] => ? = 111
Description
The number of connected components of long braid edges in the graph of braid moves of a permutation. Given a permutation $\pi$, let $\operatorname{Red}(\pi)$ denote the set of reduced words for $\pi$ in terms of simple transpositions $s_i = (i,i+1)$. We now say that two reduced words are connected by a long braid move if they are obtained from each other by a modification of the form $s_i s_{i+1} s_i \leftrightarrow s_{i+1} s_i s_{i+1}$ as a consecutive subword of a reduced word. For example, the two reduced words $s_1s_3s_2s_3$ and $s_1s_2s_3s_2$ for $$(124) = (12)(34)(23)(34) = (12)(23)(34)(23)$$ share an edge because they are obtained from each other by interchanging $s_3s_2s_3 \leftrightarrow s_3s_2s_3$. This statistic counts the number connected components of such long braid moves among all reduced words.