Values
0 => [2] => [[2],[]] => 1
1 => [1,1] => [[1,1],[]] => 1
00 => [3] => [[3],[]] => 1
01 => [2,1] => [[2,2],[1]] => 2
10 => [1,2] => [[2,1],[]] => 2
11 => [1,1,1] => [[1,1,1],[]] => 1
000 => [4] => [[4],[]] => 1
001 => [3,1] => [[3,3],[2]] => 3
010 => [2,2] => [[3,2],[1]] => 5
011 => [2,1,1] => [[2,2,2],[1,1]] => 3
100 => [1,3] => [[3,1],[]] => 3
101 => [1,2,1] => [[2,2,1],[1]] => 5
110 => [1,1,2] => [[2,1,1],[]] => 3
111 => [1,1,1,1] => [[1,1,1,1],[]] => 1
0000 => [5] => [[5],[]] => 1
0001 => [4,1] => [[4,4],[3]] => 4
0010 => [3,2] => [[4,3],[2]] => 9
0011 => [3,1,1] => [[3,3,3],[2,2]] => 6
0100 => [2,3] => [[4,2],[1]] => 9
0101 => [2,2,1] => [[3,3,2],[2,1]] => 16
0110 => [2,1,2] => [[3,2,2],[1,1]] => 11
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]] => 4
1000 => [1,4] => [[4,1],[]] => 4
1001 => [1,3,1] => [[3,3,1],[2]] => 11
1010 => [1,2,2] => [[3,2,1],[1]] => 16
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]] => 9
1100 => [1,1,3] => [[3,1,1],[]] => 6
1101 => [1,1,2,1] => [[2,2,1,1],[1]] => 9
1110 => [1,1,1,2] => [[2,1,1,1],[]] => 4
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 1
00000 => [6] => [[6],[]] => 1
00001 => [5,1] => [[5,5],[4]] => 5
00010 => [4,2] => [[5,4],[3]] => 14
00011 => [4,1,1] => [[4,4,4],[3,3]] => 10
00100 => [3,3] => [[5,3],[2]] => 19
00101 => [3,2,1] => [[4,4,3],[3,2]] => 35
00110 => [3,1,2] => [[4,3,3],[2,2]] => 26
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]] => 10
01000 => [2,4] => [[5,2],[1]] => 14
01001 => [2,3,1] => [[4,4,2],[3,1]] => 40
01010 => [2,2,2] => [[4,3,2],[2,1]] => 61
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]] => 35
01100 => [2,1,3] => [[4,2,2],[1,1]] => 26
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]] => 40
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]] => 19
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => 5
10000 => [1,5] => [[5,1],[]] => 5
10001 => [1,4,1] => [[4,4,1],[3]] => 19
10010 => [1,3,2] => [[4,3,1],[2]] => 40
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]] => 26
10100 => [1,2,3] => [[4,2,1],[1]] => 35
10101 => [1,2,2,1] => [[3,3,2,1],[2,1]] => 61
10110 => [1,2,1,2] => [[3,2,2,1],[1,1]] => 40
10111 => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => 14
11000 => [1,1,4] => [[4,1,1],[]] => 10
11001 => [1,1,3,1] => [[3,3,1,1],[2]] => 26
11010 => [1,1,2,2] => [[3,2,1,1],[1]] => 35
11011 => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => 19
11100 => [1,1,1,3] => [[3,1,1,1],[]] => 10
11101 => [1,1,1,2,1] => [[2,2,1,1,1],[1]] => 14
11110 => [1,1,1,1,2] => [[2,1,1,1,1],[]] => 5
11111 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => 1
000000 => [7] => [[7],[]] => 1
000001 => [6,1] => [[6,6],[5]] => 6
000010 => [5,2] => [[6,5],[4]] => 20
000011 => [5,1,1] => [[5,5,5],[4,4]] => 15
000100 => [4,3] => [[6,4],[3]] => 34
000101 => [4,2,1] => [[5,5,4],[4,3]] => 64
000110 => [4,1,2] => [[5,4,4],[3,3]] => 50
000111 => [4,1,1,1] => [[4,4,4,4],[3,3,3]] => 20
001000 => [3,4] => [[6,3],[2]] => 34
001001 => [3,3,1] => [[5,5,3],[4,2]] => 99
001010 => [3,2,2] => [[5,4,3],[3,2]] => 155
001011 => [3,2,1,1] => [[4,4,4,3],[3,3,2]] => 90
001100 => [3,1,3] => [[5,3,3],[2,2]] => 71
001101 => [3,1,2,1] => [[4,4,3,3],[3,2,2]] => 111
001110 => [3,1,1,2] => [[4,3,3,3],[2,2,2]] => 55
001111 => [3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]] => 15
010000 => [2,5] => [[6,2],[1]] => 20
010001 => [2,4,1] => [[5,5,2],[4,1]] => 78
010010 => [2,3,2] => [[5,4,2],[3,1]] => 169
010011 => [2,3,1,1] => [[4,4,4,2],[3,3,1]] => 111
010100 => [2,2,3] => [[5,3,2],[2,1]] => 155
010101 => [2,2,2,1] => [[4,4,3,2],[3,2,1]] => 272
010110 => [2,2,1,2] => [[4,3,3,2],[2,2,1]] => 181
010111 => [2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => 64
011000 => [2,1,4] => [[5,2,2],[1,1]] => 50
011001 => [2,1,3,1] => [[4,4,2,2],[3,1,1]] => 132
011010 => [2,1,2,2] => [[4,3,2,2],[2,1,1]] => 181
011011 => [2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => 99
011100 => [2,1,1,3] => [[4,2,2,2],[1,1,1]] => 55
011101 => [2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => 78
011110 => [2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => 29
011111 => [2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => 6
100000 => [1,6] => [[6,1],[]] => 6
100001 => [1,5,1] => [[5,5,1],[4]] => 29
100010 => [1,4,2] => [[5,4,1],[3]] => 78
100011 => [1,4,1,1] => [[4,4,4,1],[3,3]] => 55
100100 => [1,3,3] => [[5,3,1],[2]] => 99
100101 => [1,3,2,1] => [[4,4,3,1],[3,2]] => 181
100110 => [1,3,1,2] => [[4,3,3,1],[2,2]] => 132
>>> Load all 127 entries. <<<
100111 => [1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]] => 50
101000 => [1,2,4] => [[5,2,1],[1]] => 64
101001 => [1,2,3,1] => [[4,4,2,1],[3,1]] => 181
101010 => [1,2,2,2] => [[4,3,2,1],[2,1]] => 272
101011 => [1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => 155
101100 => [1,2,1,3] => [[4,2,2,1],[1,1]] => 111
101101 => [1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => 169
101110 => [1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => 78
101111 => [1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]] => 20
110000 => [1,1,5] => [[5,1,1],[]] => 15
110001 => [1,1,4,1] => [[4,4,1,1],[3]] => 55
110010 => [1,1,3,2] => [[4,3,1,1],[2]] => 111
110011 => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => 71
110100 => [1,1,2,3] => [[4,2,1,1],[1]] => 90
110101 => [1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => 155
110110 => [1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => 99
110111 => [1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => 34
111000 => [1,1,1,4] => [[4,1,1,1],[]] => 20
111001 => [1,1,1,3,1] => [[3,3,1,1,1],[2]] => 50
111010 => [1,1,1,2,2] => [[3,2,1,1,1],[1]] => 64
111011 => [1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => 34
111100 => [1,1,1,1,3] => [[3,1,1,1,1],[]] => 15
111101 => [1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]] => 20
111110 => [1,1,1,1,1,2] => [[2,1,1,1,1,1],[]] => 6
111111 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => 1
=> [1] => [[1],[]] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of standard Young tableaux of the skew partition.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.