Identifier
-
Mp00148:
Finite Cartan types
—to root poset⟶
Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000621: Integer partitions ⟶ ℤ
Values
['A',1] => ([],1) => [2] => 1
['A',2] => ([(0,2),(1,2)],3) => [3,2] => 2
['B',2] => ([(0,3),(1,3),(3,2)],4) => [4,2] => 4
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [6,2] => 9
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even.
To be precise, this is given for a partition $\lambda \vdash n$ by the number of standard tableaux $T$ of shape $\lambda$ such that $\min\big( \operatorname{Des}(T) \cup \{n\} \big)$ is even.
This notion was used in [1, Proposition 2.3], see also [2, Theorem 1.1].
The case of an odd minimum is St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd..
To be precise, this is given for a partition $\lambda \vdash n$ by the number of standard tableaux $T$ of shape $\lambda$ such that $\min\big( \operatorname{Des}(T) \cup \{n\} \big)$ is even.
This notion was used in [1, Proposition 2.3], see also [2, Theorem 1.1].
The case of an odd minimum is St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd..
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
rowmotion cycle type
Description
The cycle type of rowmotion on the order ideals of a poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!