Identifier
-
Mp00148:
Finite Cartan types
—to root poset⟶
Posets
Mp00074: Posets —to graph⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
St000657: Integer compositions ⟶ ℤ
Values
['A',1] => ([],1) => ([],1) => [1] => 1
['A',2] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => [1,1,1] => 1
['B',2] => ([(0,3),(1,3),(3,2)],4) => ([(0,3),(1,3),(2,3)],4) => [1,2,1] => 1
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1,1] => 1
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => 1
['B',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9) => [1,1,1,1,1,1,1,1,1] => 1
['C',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9) => [1,1,1,1,1,1,1,1,1] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The smallest part of an integer composition.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
Laplacian multiplicities
Description
The composition of multiplicities of the Laplacian eigenvalues.
Let $\lambda_1 > \lambda_2 > \dots$ be the eigenvalues of the Laplacian matrix of a graph on $n$ vertices. Then this map returns the composition $a_1,\dots,a_k$ of $n$ where $a_i$ is the multiplicity of $\lambda_i$.
Let $\lambda_1 > \lambda_2 > \dots$ be the eigenvalues of the Laplacian matrix of a graph on $n$ vertices. Then this map returns the composition $a_1,\dots,a_k$ of $n$ where $a_i$ is the multiplicity of $\lambda_i$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!