Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000660: Dyck paths ⟶ ℤ
Values
[1] => [1,0] => [1,0] => 0
[1,1] => [1,0,1,0] => [1,1,0,0] => 0
[2] => [1,1,0,0] => [1,0,1,0] => 0
[1,1,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 1
[1,2] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 0
[2,1] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 0
[3] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 1
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 1
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 1
[1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
[2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 1
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 0
[3,1] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 0
[4] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => 1
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 0
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 0
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 0
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 0
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 0
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => 1
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,1,0,0,0,0] => 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,1,0,0,1,0,1,0,0,0,0] => 1
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,1,0,0,0] => 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,1,0,0,0] => 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,1,0,0,0] => 1
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0] => 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,1,0,1,0,0,0] => 1
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,1,0,0,0] => 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,1,0,0] => 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,1,0,0] => 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,1,0,0] => 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,1,0,0] => 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,1,0,0] => 1
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,1,0,0] => 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,1,0,0] => 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,1,0,0] => 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => 0
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0,1,0] => 1
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0,1,0] => 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0,1,0] => 1
>>> Load all 211 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of rises of length at least 3 of a Dyck path.
The number of Dyck paths without such rises are counted by the Motzkin numbers [1].
The number of Dyck paths without such rises are counted by the Motzkin numbers [1].
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!