Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
St000664: Permutations ⟶ ℤ
Values
[1] => [1,0] => [1] => 0
[1,1] => [1,0,1,0] => [2,1] => 0
[2] => [1,1,0,0] => [1,2] => 0
[1,1,1] => [1,0,1,0,1,0] => [2,1,3] => 0
[1,2] => [1,0,1,1,0,0] => [2,3,1] => 0
[2,1] => [1,1,0,0,1,0] => [3,1,2] => 0
[3] => [1,1,1,0,0,0] => [1,2,3] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [2,1,4,3] => 0
[1,1,2] => [1,0,1,0,1,1,0,0] => [2,4,1,3] => 0
[1,2,1] => [1,0,1,1,0,0,1,0] => [2,1,3,4] => 0
[1,3] => [1,0,1,1,1,0,0,0] => [2,3,4,1] => 0
[2,1,1] => [1,1,0,0,1,0,1,0] => [3,1,4,2] => 0
[2,2] => [1,1,0,0,1,1,0,0] => [3,4,1,2] => 0
[3,1] => [1,1,1,0,0,0,1,0] => [4,1,2,3] => 0
[4] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [2,1,4,3,5] => 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [2,4,1,3,5] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [2,1,4,5,3] => 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [2,4,5,1,3] => 0
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [2,1,5,3,4] => 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [2,5,1,3,4] => 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [2,1,3,4,5] => 0
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [2,3,4,5,1] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [3,1,4,2,5] => 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [3,4,1,2,5] => 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [3,1,4,5,2] => 0
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [3,4,5,1,2] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [4,1,5,2,3] => 0
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [4,5,1,2,3] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [5,1,2,3,4] => 0
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [2,1,4,3,6,5] => 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [2,4,1,3,6,5] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [2,1,4,6,3,5] => 0
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [2,4,6,1,3,5] => 0
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [2,1,4,3,5,6] => 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [2,4,1,3,5,6] => 0
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [2,1,4,5,6,3] => 0
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [2,4,5,6,1,3] => 0
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [2,1,5,3,6,4] => 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [2,5,1,3,6,4] => 0
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [2,1,5,6,3,4] => 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [2,5,6,1,3,4] => 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [2,1,6,3,4,5] => 0
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [2,6,1,3,4,5] => 0
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [2,1,3,4,5,6] => 0
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [3,1,4,2,6,5] => 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [3,4,1,2,6,5] => 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [3,1,4,6,2,5] => 0
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [3,4,6,1,2,5] => 2
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [3,1,4,2,5,6] => 0
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [3,4,1,2,5,6] => 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [3,1,4,5,6,2] => 0
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [3,4,5,6,1,2] => 0
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [4,1,5,2,6,3] => 0
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [4,5,1,2,6,3] => 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [4,1,5,6,2,3] => 0
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [4,5,6,1,2,3] => 0
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [5,1,6,2,3,4] => 0
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [5,6,1,2,3,4] => 0
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [6,1,2,3,4,5] => 0
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => 0
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of right ropes of a permutation.
Let $\pi$ be a permutation of length $n$. A raft of $\pi$ is a non-empty maximal sequence of consecutive small ascents, St000441The number of successions of a permutation., and a right rope is a large ascent after a raft of $\pi$.
See Definition 3.10 and Example 3.11 in [1].
Let $\pi$ be a permutation of length $n$. A raft of $\pi$ is a non-empty maximal sequence of consecutive small ascents, St000441The number of successions of a permutation., and a right rope is a large ascent after a raft of $\pi$.
See Definition 3.10 and Example 3.11 in [1].
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to 321-avoiding permutation
Description
Sends a Dyck path to a 321-avoiding permutation.
This bijection defined in [3, pp. 60] and in [2, Section 3.1].
It is shown in [1] that it sends the number of centered tunnels to the number of fixed points, the number of right tunnels to the number of exceedences, and the semilength plus the height of the middle point to 2 times the length of the longest increasing subsequence.
This bijection defined in [3, pp. 60] and in [2, Section 3.1].
It is shown in [1] that it sends the number of centered tunnels to the number of fixed points, the number of right tunnels to the number of exceedences, and the semilength plus the height of the middle point to 2 times the length of the longest increasing subsequence.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!