Identifier
-
Mp00097:
Binary words
—delta morphism⟶
Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000675: Dyck paths ⟶ ℤ
Values
0 => [1] => [1,0] => [1,1,0,0] => 2
1 => [1] => [1,0] => [1,1,0,0] => 2
00 => [2] => [1,1,0,0] => [1,1,1,0,0,0] => 3
01 => [1,1] => [1,0,1,0] => [1,1,0,1,0,0] => 2
10 => [1,1] => [1,0,1,0] => [1,1,0,1,0,0] => 2
11 => [2] => [1,1,0,0] => [1,1,1,0,0,0] => 3
000 => [3] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => 4
001 => [2,1] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 2
010 => [1,1,1] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
011 => [1,2] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => 2
100 => [1,2] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => 2
101 => [1,1,1] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
110 => [2,1] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 2
111 => [3] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => 4
0000 => [4] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 5
0001 => [3,1] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 2
0010 => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 2
0011 => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => 2
0100 => [1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => 2
0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 3
0110 => [1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => 4
0111 => [1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => 2
1000 => [1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => 2
1001 => [1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => 4
1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 3
1011 => [1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => 2
1100 => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => 2
1101 => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 2
1110 => [3,1] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 2
1111 => [4] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 5
00000 => [5] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 6
00001 => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
00010 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 2
00011 => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 2
00100 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 3
00101 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 3
00110 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => 2
00111 => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 2
01000 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 2
01001 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => 3
01010 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 4
01011 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
01100 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 2
01101 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => 3
01110 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 5
01111 => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
10000 => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
10001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 5
10010 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => 3
10011 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 2
10100 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
10101 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 4
10110 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => 3
10111 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 2
11000 => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 2
11001 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => 2
11010 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 3
11011 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 3
11100 => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 2
11101 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 2
11110 => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
11111 => [5] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 6
000000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 7
000001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
000010 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => 2
000011 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0] => 2
000100 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,1,1,0,0,0] => 2
000101 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => 2
000110 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,1,0,0] => 2
000111 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0] => 2
001000 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,1,1,1,0,0,0,0] => 2
001001 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,1,0,0] => 2
001010 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => 3
001011 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => 3
001100 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,0] => 4
001101 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,1,0,0] => 4
001110 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0] => 2
001111 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => 2
010000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => 2
010001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => 3
010010 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => 5
010011 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => 4
010100 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => 3
010101 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => 4
010110 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => 3
010111 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => 2
011000 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => 2
011001 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => 3
011010 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => 3
011011 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => 2
011100 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => 2
011101 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => 3
011110 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => 6
011111 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 2
100000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 2
100001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => 6
100010 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => 3
100011 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => 2
100100 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => 2
100101 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => 3
100110 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => 3
>>> Load all 126 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of centered multitunnels of a Dyck path.
This is the number of factorisations D=ABC of a Dyck path, such that B is a Dyck path and A and B have the same length.
This is the number of factorisations D=ABC of a Dyck path, such that B is a Dyck path and A and B have the same length.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
delta morphism
Description
Applies the delta morphism to a binary word.
The delta morphism of a finite word w is the integer compositions composed of the lengths of consecutive runs of the same letter in w.
The delta morphism of a finite word w is the integer compositions composed of the lengths of consecutive runs of the same letter in w.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!