Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
St000685: Dyck paths ⟶ ℤ
Values
[1] => [1,0] => 1
[1,1] => [1,0,1,0] => 2
[2] => [1,1,0,0] => 1
[1,1,1] => [1,0,1,0,1,0] => 3
[1,2] => [1,0,1,1,0,0] => 1
[2,1] => [1,1,0,0,1,0] => 1
[3] => [1,1,1,0,0,0] => 1
[1,1,1,1] => [1,0,1,0,1,0,1,0] => 4
[1,1,2] => [1,0,1,0,1,1,0,0] => 1
[1,2,1] => [1,0,1,1,0,0,1,0] => 2
[1,3] => [1,0,1,1,1,0,0,0] => 1
[2,1,1] => [1,1,0,0,1,0,1,0] => 1
[2,2] => [1,1,0,0,1,1,0,0] => 1
[3,1] => [1,1,1,0,0,0,1,0] => 1
[4] => [1,1,1,1,0,0,0,0] => 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0] => 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 1
[2,3] => [1,1,0,0,1,1,1,0,0,0] => 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0] => 1
[4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
[5] => [1,1,1,1,1,0,0,0,0,0] => 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 1
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => 1
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => 7
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => 2
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => 3
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => 1
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => 3
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => 1
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => 1
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => 2
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => 2
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => 2
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 1
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 1
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => 1
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => 1
>>> Load all 127 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dominant dimension of the LNakayama algebra associated to a Dyck path.
To every Dyck path there is an LNakayama algebra associated as described in St000684The global dimension of the LNakayama algebra associated to a Dyck path..
To every Dyck path there is an LNakayama algebra associated as described in St000684The global dimension of the LNakayama algebra associated to a Dyck path..
Map
bounce path
Description
The bounce path determined by an integer composition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!