Identifier
Values
[1] => [1,0] => [1,0] => 1
[1,1] => [1,0,1,0] => [1,1,0,0] => 1
[2] => [1,1,0,0] => [1,0,1,0] => 2
[1,1,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 1
[1,2] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
[2,1] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 2
[3] => [1,1,1,0,0,0] => [1,1,0,1,0,0] => 2
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 1
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 2
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 2
[1,3] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => 2
[2,1,1] => [1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => 2
[2,2] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => 2
[3,1] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
[4] => [1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0] => 2
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => 2
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0] => 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 2
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 2
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 2
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 2
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => 2
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 2
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => 2
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 2
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => 2
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 2
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 2
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 2
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => 2
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 2
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 2
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 2
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 2
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 2
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0] => 2
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => 2
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 2
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,1,0,0] => 2
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0] => 2
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0,1,0] => 2
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,1,1,0,0,0] => 2
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0] => 2
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => 2
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 2
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,1,0,0] => 2
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,1,0,0,0] => 2
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,0,0,1,0,1,0,0] => 2
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => 2
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0,1,0] => 2
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0,1,1,0,0] => 2
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0] => 2
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,1,1,0,0,0,0] => 2
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0,1,0] => 2
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,1,0,0,0,0] => 2
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,0,1,0,1,0,1,0,0,0] => 2
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 2
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 2
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => 2
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,1,0,0] => 2
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => 2
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 2
>>> Load all 127 entries. <<<
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,1,1,0,0,0] => 2
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,1,0,1,0,0] => 2
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => 2
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 2
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 2
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,1,0,0] => 2
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,1,1,1,0,0,0,0] => 2
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => 2
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,1,1,0,0,0] => 2
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,0,0,1,0,1,0,0,0] => 2
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => 2
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0,1,0] => 2
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0,1,1,0,0] => 2
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => 2
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,0,1,1,1,0,0,0] => 2
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0,1,0] => 2
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => 2
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => 2
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => 2
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0,1,0] => 2
[4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0,1,1,0,0] => 2
[4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => 2
[5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,1,1,0,0,0,0,0] => 2
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0,1,0] => 2
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => 2
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The finitistic dominant dimension of a Dyck path.
To every LNakayama algebra there is a corresponding Dyck path, see also St000684The global dimension of the LNakayama algebra associated to a Dyck path.. We associate the finitistic dominant dimension of the algebra to the corresponding Dyck path.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
Delest-Viennot-inverse
Description
Return the Dyck path obtained by applying the inverse of Delest-Viennot's bijection to the corresponding parallelogram polyomino.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\beta^{(-1)}\circ\gamma)(D)$.