Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000704: Integer partitions ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => 1
([],4) => [1,1,1,1] => [1,1,1] => 1
([(2,3)],4) => [2,1,1] => [1,1] => 1
([(0,3),(1,2)],4) => [2,2] => [2] => 1
([],5) => [1,1,1,1,1] => [1,1,1,1] => 1
([(3,4)],5) => [2,1,1,1] => [1,1,1] => 1
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => 1
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => 2
([(0,1),(2,4),(3,4)],5) => [3,2] => [2] => 1
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [2] => 1
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => 1
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => 1
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 1
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => 3
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => 1
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 2
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => [4,2] => [2] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => 1
([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => 1
([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [2] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [2] => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,3] => [3] => 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [3] => 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 1
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => 1
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 1
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => 4
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 3
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 1
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 2
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => 3
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => 2
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 1
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 3
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [5,2] => [2] => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 2
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 3
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 2
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [4,3] => [3] => 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 1
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [4,3] => [3] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 1
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,2] => [2] => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 1
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => 3
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 1
>>> Load all 216 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry.
This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of semistandard tableaux of shape $\lambda$ with maximal entry $k$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly,
$$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$
where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of semistandard tableaux of shape $\lambda$ with maximal entry $k$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly,
$$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$
where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!