Your data matches 22 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000704
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000704: Integer partitions ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 3
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 4
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 3
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [2]
=> 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> 3
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry. This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of [[SemistandardTableaux|semistandard tableaux]] of shape $\lambda$ with maximal entry $k$. Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly, $$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$ where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell. See [Theorem 6.3, 1] for details.
Matching statistic: St001908
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001908: Integer partitions ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 3
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 4
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 3
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [2]
=> 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> 3
Description
The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. For example, there are eight tableaux of shape $[3,2,1]$ with maximal entry $3$, but two of them have the same weight.
Matching statistic: St000045
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000045: Binary trees ⟶ ℤResult quality: 52% ā—values known / values provided: 52%ā—distinct values known / distinct values provided: 83%
Values
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> 1
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [[[.,.],.],.]
=> 1
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[[.,.],[.,[.,.]]],.]
=> 3
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ? = 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> ? = 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> ? = 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> 4
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [.,[[[.,.],[.,[.,.]]],.]]
=> 3
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> ? = 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[[.,.],.],[.,.]],.]
=> 3
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [.,[[[.,.],[.,[.,.]]],.]]
=> 3
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> 2
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> 3
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 1
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> ? = 1
([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> ? = 1
([(4,7),(5,6)],8)
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [[[.,.],[.,[.,[.,[.,.]]]]],.]
=> ? = 5
([(4,7),(5,6),(6,7)],8)
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 1
([(4,6),(4,7),(5,6),(5,7)],8)
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 1
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 1
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> [5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> ? = 1
Description
The number of linear extensions of a binary tree. Also, the number of increasing / decreasing binary trees labelled by $1, \dots, n$ of this shape. Also, the size of the sylvester class corresponding to this tree when the Tamari order is seen as a quotient poset of the right weak order on permutations. Also, the number of permutations which give this tree shape when inserted in a binary search tree. Also, the number of permutations which increasing / decreasing tree is of this shape.
Matching statistic: St001685
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001685: Permutations ⟶ ℤResult quality: 16% ā—values known / values provided: 16%ā—distinct values known / distinct values provided: 50%
Values
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 0 = 1 - 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 0 = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 0 = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 0 = 1 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 0 = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => 0 = 1 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => 0 = 1 - 1
([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 0 = 1 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 0 = 1 - 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 0 = 1 - 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 2 = 3 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => 1 = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 0 = 1 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 0 = 1 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 0 = 1 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 0 = 1 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([],7)
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 1 - 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 1 - 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 1 - 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 4 - 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 3 - 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 1 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 2 - 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => ? = 3 - 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => ? = 1 - 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 3 - 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 2 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1 - 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 3 - 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 2 - 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 2 - 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => ? = 1 - 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => ? = 3 - 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => ? = 1 - 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 2 - 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => ? = 1 - 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
Description
The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation.
Matching statistic: St001705
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001705: Permutations ⟶ ℤResult quality: 16% ā—values known / values provided: 16%ā—distinct values known / distinct values provided: 50%
Values
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 0 = 1 - 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 0 = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 0 = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 0 = 1 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 0 = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => 0 = 1 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => 0 = 1 - 1
([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 0 = 1 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 0 = 1 - 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 0 = 1 - 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 2 = 3 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => 1 = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 0 = 1 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 0 = 1 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 0 = 1 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => 0 = 1 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 0 = 1 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => 0 = 1 - 1
([],7)
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 1 - 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => ? = 1 - 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 1 - 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 4 - 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 3 - 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 1 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 2 - 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => ? = 3 - 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => ? = 1 - 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 3 - 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 2 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 1 - 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 3 - 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 2 - 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 2 - 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => ? = 1 - 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => ? = 3 - 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => ? = 1 - 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => ? = 2 - 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => ? = 1 - 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 1 - 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => ? = 1 - 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => ? = 1 - 1
Description
The number of occurrences of the pattern 2413 in a permutation.
Matching statistic: St001060
Mp00247: Graphs —de-duplicate⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 14% ā—values known / values provided: 14%ā—distinct values known / distinct values provided: 17%
Values
([],3)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
([],4)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
([(2,3)],4)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 1 + 1
([],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
([(3,4)],5)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 2 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 1 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1 + 1
([],6)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
([(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 3 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 2 + 1
([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 1 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 1 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1 + 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ? = 1 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ? = 2 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 1 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],2)
=> ? = 1 + 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? = 1 + 1
([],7)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
([(5,6)],7)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 4 + 1
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 3 + 1
([(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 2 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 1 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 3 + 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 1 + 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1 + 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1 + 1
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ? = 3 + 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 1 + 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 2 + 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ? = 1 + 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,1),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Mp00111: Graphs —complement⟶ Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 13% ā—values known / values provided: 13%ā—distinct values known / distinct values provided: 17%
Values
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6],[8,9]]
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> 1
([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> 1
([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> 1
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> [[1,2,3,10],[4,5,6,14],[7,8,9],[11,12,13]]
=> ? = 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,3]
=> [[1,2,3,7],[4,5,6,11],[8,9,10]]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,2]
=> [[1,2,5,12],[3,4,8],[6,7,11],[9,10]]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [[1,2,3,10],[4,5,6],[7,8,9]]
=> 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18],[19,20,21],[22,23,24]]
=> ? = 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6,13],[8,9,16],[11,12],[14,15]]
=> ? = 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6,15],[7,8],[10,11],[13,14]]
=> ? = 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [[1,2,11],[3,4,14],[5,6],[7,8],[9,10],[12,13]]
=> ? = 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18]]
=> ? = 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? = 1
([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 1
([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> 1
([(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> ? = 1
([(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,4]
=> [[1,2,3,4,9,10],[5,6,7,8]]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [[1,2,3,7,8,9],[4,5,6]]
=> 1
([(3,6),(4,5)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5,5]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20]]
=> ? = 4
([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15]]
=> ? = 1
([(2,3),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4,4]
=> ?
=> ? = 3
([(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15]]
=> ? = 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4]
=> [[1,2,3,4,9],[5,6,7,8,14],[10,11,12,13]]
=> ? = 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [5,5,3,3]
=> [[1,2,3,10,11],[4,5,6,15,16],[7,8,9],[12,13,14]]
=> ? = 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4]
=> [[1,2,3,4,9],[5,6,7,8,14],[10,11,12,13]]
=> ? = 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,5,2,2]
=> [[1,2,7,8,9],[3,4,12,13,14],[5,6],[10,11]]
=> ? = 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,3]
=> [[1,2,3,7,8],[4,5,6,12,13],[9,10,11]]
=> ? = 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4,3]
=> [[1,2,3,7,16],[4,5,6,11],[8,9,10,15],[12,13,14]]
=> ? = 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4]
=> [[1,2,3,4,13],[5,6,7,8],[9,10,11,12]]
=> ? = 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,3,2]
=> [[1,2,5,9,14],[3,4,8,13],[6,7,12],[10,11]]
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4]
=> [[1,2,3,4,13],[5,6,7,8],[9,10,11,12]]
=> ? = 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4]
=> [[1,2,3,4,13],[5,6,7,8],[9,10,11,12]]
=> ? = 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,3]
=> [[1,2,3,7,12],[4,5,6,11],[8,9,10]]
=> 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3,3]
=> [[1,2,3,10,11],[4,5,6],[7,8,9]]
=> 1
([(1,6),(2,5),(3,4)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,4,4,4,4]
=> ?
=> ? = 3
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4,4]
=> [[1,2,3,4,17],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20],[21,22,23,24]]
=> ? = 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,3,3,3,3]
=> ?
=> ? = 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20],[21,22,23,24]]
=> ? = 3
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,3,3]
=> ?
=> ? = 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]
=> ? = 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,3,3]
=> ?
=> ? = 2
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,2,2]
=> ?
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> ?
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]
=> ? = 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3]
=> [[1,2,3,7],[4,5,6,11],[8,9,10,15],[12,13,14]]
=> ? = 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3,3]
=> [[1,2,3,13],[4,5,6,17],[7,8,9,21],[10,11,12],[14,15,16],[18,19,20]]
=> ? = 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3,3]
=> [[1,2,3,13],[4,5,6,17],[7,8,9,21],[10,11,12],[14,15,16],[18,19,20]]
=> ? = 3
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3,2]
=> ?
=> ? = 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 2
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3]
=> [[1,2,3,7],[4,5,6,11],[8,9,10]]
=> 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St001696
Mp00111: Graphs —complement⟶ Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St001696: Standard tableaux ⟶ ℤResult quality: 13% ā—values known / values provided: 13%ā—distinct values known / distinct values provided: 17%
Values
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 0 = 1 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 0 = 1 - 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 0 = 1 - 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> 0 = 1 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> 0 = 1 - 1
([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> 0 = 1 - 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> 0 = 1 - 1
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 3 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 1 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]]
=> ? = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 1 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> 0 = 1 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> 0 = 1 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12]]
=> 0 = 1 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> 0 = 1 - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18],[19,20,21],[22,23,24]]
=> ? = 1 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 1 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15,16]]
=> ? = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14,15]]
=> ? = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 1 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 1 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18]]
=> ? = 1 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? = 1 - 1
([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0 = 1 - 1
([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> 0 = 1 - 1
([(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? = 1 - 1
([(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,4]
=> [[1,2,3,4,5,6],[7,8,9,10]]
=> 0 = 1 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> 0 = 1 - 1
([(3,6),(4,5)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5,5]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20]]
=> ? = 4 - 1
([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15]]
=> ? = 1 - 1
([(2,3),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4,4]
=> ?
=> ? = 3 - 1
([(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15]]
=> ? = 1 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14]]
=> ? = 1 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [5,5,3,3]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13],[14,15,16]]
=> ? = 2 - 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14]]
=> ? = 1 - 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,5,2,2]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12],[13,14]]
=> ? = 1 - 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,3]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13]]
=> ? = 1 - 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> 0 = 1 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4,3]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12,13],[14,15,16]]
=> ? = 3 - 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12,13]]
=> ? = 1 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,3,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]]
=> 0 = 1 - 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12,13]]
=> ? = 1 - 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12,13]]
=> ? = 1 - 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,3]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12]]
=> 0 = 1 - 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> 0 = 1 - 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> 0 = 1 - 1
([(1,6),(2,5),(3,4)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,4,4,4,4]
=> ?
=> ? = 3 - 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4,4]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12,13],[14,15,16,17]]
=> ? = 1 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20],[21,22,23,24]]
=> ? = 2 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,3,3,3,3]
=> ?
=> ? = 1 - 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20],[21,22,23,24]]
=> ? = 3 - 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,3,3]
=> ?
=> ? = 1 - 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]
=> ? = 1 - 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,3,3]
=> ?
=> ? = 2 - 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,2,2]
=> ?
=> ? = 1 - 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> ?
=> ? = 1 - 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]
=> ? = 1 - 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 1 - 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 1 - 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15]]
=> ? = 1 - 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 2 - 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15],[16,17,18],[19,20,21]]
=> ? = 1 - 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15],[16,17,18],[19,20,21]]
=> ? = 3 - 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 1 - 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3,2]
=> ?
=> ? = 1 - 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 2 - 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 1 - 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> 0 = 1 - 1
Description
The natural major index of a standard Young tableau. A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation. The natural major index of a tableau with natural descent set $D$ is then $\sum_{d\in D} d$.
Mp00243: Graphs —weak duplicate order⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001613: Lattices ⟶ ℤResult quality: 12% ā—values known / values provided: 12%ā—distinct values known / distinct values provided: 17%
Values
([],3)
=> ([],1)
=> ([(0,1)],2)
=> 1
([],4)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(1,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([],5)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ?
=> ? = 1
([],6)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(2,5),(3,4)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(0,5),(1,4),(2,3)],6)
=> ([],6)
=> ?
=> ? = 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ?
=> ? = 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ?
=> ? = 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([],5)
=> ?
=> ? = 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],5)
=> ?
=> ? = 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],6)
=> ?
=> ? = 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ?
=> ? = 1
([],7)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(3,6),(4,5)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 4
([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
([(2,3),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 3
([(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(3,8),(4,10),(4,11),(5,7),(5,10),(6,7),(6,11),(7,13),(8,12),(9,12),(10,3),(10,13),(11,2),(11,13),(12,1),(13,8),(13,9)],14)
=> ? = 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(1,6),(2,5),(3,4)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 3
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ?
=> ? = 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ?
=> ? = 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],6)
=> ?
=> ? = 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 3
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,5),(3,4)],6)
=> ?
=> ? = 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ?
=> ? = 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ? = 2
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(4,5)],6)
=> ?
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(2,11),(3,8),(3,10),(4,12),(4,13),(5,3),(5,12),(5,14),(6,2),(6,13),(6,14),(7,18),(8,16),(9,17),(10,7),(10,16),(11,7),(11,17),(12,8),(12,15),(13,9),(13,15),(14,10),(14,11),(14,15),(15,16),(15,17),(16,18),(17,18),(18,1)],19)
=> ? = 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(2,11),(3,8),(3,10),(4,12),(4,13),(5,3),(5,12),(5,14),(6,2),(6,13),(6,14),(7,18),(8,16),(9,17),(10,7),(10,16),(11,7),(11,17),(12,8),(12,15),(13,9),(13,15),(14,10),(14,11),(14,15),(15,16),(15,17),(16,18),(17,18),(18,1)],19)
=> ? = 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(2,5),(3,4)],6)
=> ?
=> ? = 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 3
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
Description
The binary logarithm of the size of the center of a lattice. An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a Boolean lattice.
Mp00243: Graphs —weak duplicate order⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001719: Lattices ⟶ ℤResult quality: 12% ā—values known / values provided: 12%ā—distinct values known / distinct values provided: 17%
Values
([],3)
=> ([],1)
=> ([(0,1)],2)
=> 1
([],4)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(1,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([],5)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ?
=> ? = 1
([],6)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(2,5),(3,4)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(0,5),(1,4),(2,3)],6)
=> ([],6)
=> ?
=> ? = 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ?
=> ? = 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ?
=> ? = 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([],5)
=> ?
=> ? = 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],5)
=> ?
=> ? = 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],6)
=> ?
=> ? = 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ?
=> ? = 1
([],7)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(3,6),(4,5)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 4
([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
([(2,3),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 3
([(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(3,8),(4,10),(4,11),(5,7),(5,10),(6,7),(6,11),(7,13),(8,12),(9,12),(10,3),(10,13),(11,2),(11,13),(12,1),(13,8),(13,9)],14)
=> ? = 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
([(1,6),(2,5),(3,4)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 3
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ?
=> ? = 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ?
=> ? = 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],6)
=> ?
=> ? = 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 3
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,5),(3,4)],6)
=> ?
=> ? = 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ?
=> ? = 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ? = 2
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(4,5)],6)
=> ?
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(2,11),(3,8),(3,10),(4,12),(4,13),(5,3),(5,12),(5,14),(6,2),(6,13),(6,14),(7,18),(8,16),(9,17),(10,7),(10,16),(11,7),(11,17),(12,8),(12,15),(13,9),(13,15),(14,10),(14,11),(14,15),(15,16),(15,17),(16,18),(17,18),(18,1)],19)
=> ? = 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(2,11),(3,8),(3,10),(4,12),(4,13),(5,3),(5,12),(5,14),(6,2),(6,13),(6,14),(7,18),(8,16),(9,17),(10,7),(10,16),(11,7),(11,17),(12,8),(12,15),(13,9),(13,15),(14,10),(14,11),(14,15),(15,16),(15,17),(16,18),(17,18),(18,1)],19)
=> ? = 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(2,5),(3,4)],6)
=> ?
=> ? = 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 3
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice. An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
The following 12 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001881The number of factors of a lattice as a Cartesian product of lattices. St001845The number of join irreducibles minus the rank of a lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001568The smallest positive integer that does not appear twice in the partition.