Identifier
Values
['A',1] => ([],1) => ([],1) => [1] => 1
['A',2] => ([(0,2),(1,2)],3) => ([(1,2)],3) => [1,2] => 3
['B',2] => ([(0,3),(1,3),(3,2)],4) => ([(2,3)],4) => [1,3] => 3
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(4,5)],6) => [1,5] => 3
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => 6
['B',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9) => [1,1,1,1,1,1,3] => 8
['C',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9) => [1,1,1,1,1,1,3] => 8
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The sum of the positions of the strong records of an integer composition.
A strong record is an element $a_i$ such that $a_i > a_j$ for all $j < i$. This statistic is the sum of the positions of the strong records.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
Laplacian multiplicities
Description
The composition of multiplicities of the Laplacian eigenvalues.
Let $\lambda_1 > \lambda_2 > \dots$ be the eigenvalues of the Laplacian matrix of a graph on $n$ vertices. Then this map returns the composition $a_1,\dots,a_k$ of $n$ where $a_i$ is the multiplicity of $\lambda_i$.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.