Identifier
Values
[1] => [[1]] => [1] => 1
[2] => [[1,2]] => [2] => 1
[1,1] => [[1],[2]] => [1,1] => 1
[3] => [[1,2,3]] => [3] => 1
[2,1] => [[1,3],[2]] => [1,2] => 2
[1,1,1] => [[1],[2],[3]] => [1,1,1] => 1
[4] => [[1,2,3,4]] => [4] => 1
[3,1] => [[1,3,4],[2]] => [1,3] => 2
[2,2] => [[1,2],[3,4]] => [2,2] => 1
[2,1,1] => [[1,4],[2],[3]] => [1,1,2] => 2
[1,1,1,1] => [[1],[2],[3],[4]] => [1,1,1,1] => 1
[5] => [[1,2,3,4,5]] => [5] => 1
[4,1] => [[1,3,4,5],[2]] => [1,4] => 2
[3,2] => [[1,2,5],[3,4]] => [2,3] => 2
[3,1,1] => [[1,4,5],[2],[3]] => [1,1,3] => 2
[2,2,1] => [[1,3],[2,5],[4]] => [1,2,2] => 2
[2,1,1,1] => [[1,5],[2],[3],[4]] => [1,1,1,2] => 2
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [1,1,1,1,1] => 1
[6] => [[1,2,3,4,5,6]] => [6] => 1
[5,1] => [[1,3,4,5,6],[2]] => [1,5] => 2
[4,2] => [[1,2,5,6],[3,4]] => [2,4] => 2
[4,1,1] => [[1,4,5,6],[2],[3]] => [1,1,4] => 2
[3,3] => [[1,2,3],[4,5,6]] => [3,3] => 1
[3,2,1] => [[1,3,6],[2,5],[4]] => [1,2,3] => 3
[3,1,1,1] => [[1,5,6],[2],[3],[4]] => [1,1,1,3] => 2
[2,2,2] => [[1,2],[3,4],[5,6]] => [2,2,2] => 1
[2,2,1,1] => [[1,4],[2,6],[3],[5]] => [1,1,2,2] => 2
[2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [1,1,1,1,2] => 2
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => 1
[7] => [[1,2,3,4,5,6,7]] => [7] => 1
[6,1] => [[1,3,4,5,6,7],[2]] => [1,6] => 2
[5,2] => [[1,2,5,6,7],[3,4]] => [2,5] => 2
[5,1,1] => [[1,4,5,6,7],[2],[3]] => [1,1,5] => 2
[4,3] => [[1,2,3,7],[4,5,6]] => [3,4] => 2
[4,2,1] => [[1,3,6,7],[2,5],[4]] => [1,2,4] => 3
[4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => [1,1,1,4] => 2
[3,3,1] => [[1,3,4],[2,6,7],[5]] => [1,3,3] => 2
[3,2,2] => [[1,2,7],[3,4],[5,6]] => [2,2,3] => 2
[3,2,1,1] => [[1,4,7],[2,6],[3],[5]] => [1,1,2,3] => 3
[3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => [1,1,1,1,3] => 2
[2,2,2,1] => [[1,3],[2,5],[4,7],[6]] => [1,2,2,2] => 2
[2,2,1,1,1] => [[1,5],[2,7],[3],[4],[6]] => [1,1,1,2,2] => 2
[2,1,1,1,1,1] => [[1,7],[2],[3],[4],[5],[6]] => [1,1,1,1,1,2] => 2
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,1] => 1
[8] => [[1,2,3,4,5,6,7,8]] => [8] => 1
[7,1] => [[1,3,4,5,6,7,8],[2]] => [1,7] => 2
[6,2] => [[1,2,5,6,7,8],[3,4]] => [2,6] => 2
[6,1,1] => [[1,4,5,6,7,8],[2],[3]] => [1,1,6] => 2
[5,3] => [[1,2,3,7,8],[4,5,6]] => [3,5] => 2
[5,2,1] => [[1,3,6,7,8],[2,5],[4]] => [1,2,5] => 3
[5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => [1,1,1,5] => 2
[4,4] => [[1,2,3,4],[5,6,7,8]] => [4,4] => 1
[4,3,1] => [[1,3,4,8],[2,6,7],[5]] => [1,3,4] => 3
[4,2,2] => [[1,2,7,8],[3,4],[5,6]] => [2,2,4] => 2
[4,2,1,1] => [[1,4,7,8],[2,6],[3],[5]] => [1,1,2,4] => 3
[4,1,1,1,1] => [[1,6,7,8],[2],[3],[4],[5]] => [1,1,1,1,4] => 2
[3,3,2] => [[1,2,5],[3,4,8],[6,7]] => [2,3,3] => 2
[3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => [1,1,3,3] => 2
[3,2,2,1] => [[1,3,8],[2,5],[4,7],[6]] => [1,2,2,3] => 3
[3,2,1,1,1] => [[1,5,8],[2,7],[3],[4],[6]] => [1,1,1,2,3] => 3
[3,1,1,1,1,1] => [[1,7,8],[2],[3],[4],[5],[6]] => [1,1,1,1,1,3] => 2
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => 1
[2,2,2,1,1] => [[1,4],[2,6],[3,8],[5],[7]] => [1,1,2,2,2] => 2
[2,2,1,1,1,1] => [[1,6],[2,8],[3],[4],[5],[7]] => [1,1,1,1,2,2] => 2
[2,1,1,1,1,1,1] => [[1,8],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,2] => 2
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,1] => 1
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => 1
[8,1] => [[1,3,4,5,6,7,8,9],[2]] => [1,8] => 2
[7,2] => [[1,2,5,6,7,8,9],[3,4]] => [2,7] => 2
[7,1,1] => [[1,4,5,6,7,8,9],[2],[3]] => [1,1,7] => 2
[6,3] => [[1,2,3,7,8,9],[4,5,6]] => [3,6] => 2
[6,2,1] => [[1,3,6,7,8,9],[2,5],[4]] => [1,2,6] => 3
[6,1,1,1] => [[1,5,6,7,8,9],[2],[3],[4]] => [1,1,1,6] => 2
[5,4] => [[1,2,3,4,9],[5,6,7,8]] => [4,5] => 2
[5,3,1] => [[1,3,4,8,9],[2,6,7],[5]] => [1,3,5] => 3
[5,2,2] => [[1,2,7,8,9],[3,4],[5,6]] => [2,2,5] => 2
[5,2,1,1] => [[1,4,7,8,9],[2,6],[3],[5]] => [1,1,2,5] => 3
[5,1,1,1,1] => [[1,6,7,8,9],[2],[3],[4],[5]] => [1,1,1,1,5] => 2
[4,4,1] => [[1,3,4,5],[2,7,8,9],[6]] => [1,4,4] => 2
[4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => [2,3,4] => 3
[4,3,1,1] => [[1,4,5,9],[2,7,8],[3],[6]] => [1,1,3,4] => 3
[4,2,2,1] => [[1,3,8,9],[2,5],[4,7],[6]] => [1,2,2,4] => 3
[4,2,1,1,1] => [[1,5,8,9],[2,7],[3],[4],[6]] => [1,1,1,2,4] => 3
[4,1,1,1,1,1] => [[1,7,8,9],[2],[3],[4],[5],[6]] => [1,1,1,1,1,4] => 2
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => 1
[3,3,2,1] => [[1,3,6],[2,5,9],[4,8],[7]] => [1,2,3,3] => 3
[3,3,1,1,1] => [[1,5,6],[2,8,9],[3],[4],[7]] => [1,1,1,3,3] => 2
[3,2,2,2] => [[1,2,9],[3,4],[5,6],[7,8]] => [2,2,2,3] => 2
[3,2,2,1,1] => [[1,4,9],[2,6],[3,8],[5],[7]] => [1,1,2,2,3] => 3
[3,2,1,1,1,1] => [[1,6,9],[2,8],[3],[4],[5],[7]] => [1,1,1,1,2,3] => 3
[3,1,1,1,1,1,1] => [[1,8,9],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,3] => 2
[2,2,2,2,1] => [[1,3],[2,5],[4,7],[6,9],[8]] => [1,2,2,2,2] => 2
[2,2,2,1,1,1] => [[1,5],[2,7],[3,9],[4],[6],[8]] => [1,1,1,2,2,2] => 2
[2,2,1,1,1,1,1] => [[1,7],[2,9],[3],[4],[5],[6],[8]] => [1,1,1,1,1,2,2] => 2
[2,1,1,1,1,1,1,1] => [[1,9],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,2] => 2
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [1,1,1,1,1,1,1,1,1] => 1
[9,1] => [[1,3,4,5,6,7,8,9,10],[2]] => [1,9] => 2
[5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => [5,5] => 1
[4,4,1,1] => [[1,4,5,6],[2,8,9,10],[3],[7]] => [1,1,4,4] => 2
[3,3,2,2] => [[1,2,7],[3,4,10],[5,6],[8,9]] => [2,2,3,3] => 2
[3,3,1,1,1,1] => [[1,6,7],[2,9,10],[3],[4],[5],[8]] => [1,1,1,1,3,3] => 2
>>> Load all 110 entries. <<<
[2,2,2,2,1,1] => [[1,4],[2,6],[3,8],[5,10],[7],[9]] => [1,1,2,2,2,2] => 2
[2,2,1,1,1,1,1,1] => [[1,8],[2,10],[3],[4],[5],[6],[7],[9]] => [1,1,1,1,1,1,2,2] => 2
[1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => [1,1,1,1,1,1,1,1,1,1] => 1
[6,6] => [[1,2,3,4,5,6],[7,8,9,10,11,12]] => [6,6] => 1
[5,5,1,1] => [[1,4,5,6,7],[2,9,10,11,12],[3],[8]] => [1,1,5,5] => 2
[4,4,2,2] => [[1,2,7,8],[3,4,11,12],[5,6],[9,10]] => [2,2,4,4] => 2
[3,3,2,2,1,1] => [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]] => [1,1,2,2,3,3] => 3
[2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => [2,2,2,2,2,2] => 1
[1,1,1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]] => [1,1,1,1,1,1,1,1,1,1,1,1] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of strong records in an integer composition.
A strong record is an element $a_i$ such that $a_i > a_j$ for all $j < i$. In particular, the first part of a composition is a strong record.
Theorem 1.1 of [1] provides the generating function for compositions with parts in a given set according to the sum of the parts, the number of parts and the number of strong records.
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau $T$ the composition $(c_1,\dots,c_k)$, such that $k$ is minimal and the numbers $c_1+\dots+c_i + 1,\dots,c_1+\dots+c_{i+1}$ form a horizontal strip in $T$ for all $i$.
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau $T$ labeled down (in English convention) each column to the shape of a partition.