Identifier
-
Mp00045:
Integer partitions
—reading tableau⟶
Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
St000766: Integer compositions ⟶ ℤ
Values
[1] => [[1]] => [1] => [1] => 0
[2] => [[1,2]] => [2] => [2] => 0
[1,1] => [[1],[2]] => [1,1] => [1,1] => 0
[3] => [[1,2,3]] => [3] => [3] => 0
[2,1] => [[1,3],[2]] => [1,2] => [2,1] => 1
[1,1,1] => [[1],[2],[3]] => [1,1,1] => [1,1,1] => 0
[4] => [[1,2,3,4]] => [4] => [4] => 0
[3,1] => [[1,3,4],[2]] => [1,3] => [3,1] => 1
[2,2] => [[1,2],[3,4]] => [2,2] => [2,2] => 0
[2,1,1] => [[1,4],[2],[3]] => [1,1,2] => [2,1,1] => 2
[1,1,1,1] => [[1],[2],[3],[4]] => [1,1,1,1] => [1,1,1,1] => 0
[5] => [[1,2,3,4,5]] => [5] => [5] => 0
[4,1] => [[1,3,4,5],[2]] => [1,4] => [4,1] => 1
[3,2] => [[1,2,5],[3,4]] => [2,3] => [3,2] => 1
[3,1,1] => [[1,4,5],[2],[3]] => [1,1,3] => [3,1,1] => 2
[2,2,1] => [[1,3],[2,5],[4]] => [1,2,2] => [2,1,2] => 1
[2,1,1,1] => [[1,5],[2],[3],[4]] => [1,1,1,2] => [2,1,1,1] => 3
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [1,1,1,1,1] => [1,1,1,1,1] => 0
[6] => [[1,2,3,4,5,6]] => [6] => [6] => 0
[5,1] => [[1,3,4,5,6],[2]] => [1,5] => [5,1] => 1
[4,2] => [[1,2,5,6],[3,4]] => [2,4] => [4,2] => 1
[4,1,1] => [[1,4,5,6],[2],[3]] => [1,1,4] => [4,1,1] => 2
[3,3] => [[1,2,3],[4,5,6]] => [3,3] => [3,3] => 0
[3,2,1] => [[1,3,6],[2,5],[4]] => [1,2,3] => [3,1,2] => 2
[3,1,1,1] => [[1,5,6],[2],[3],[4]] => [1,1,1,3] => [3,1,1,1] => 3
[2,2,2] => [[1,2],[3,4],[5,6]] => [2,2,2] => [2,2,2] => 0
[2,2,1,1] => [[1,4],[2,6],[3],[5]] => [1,1,2,2] => [2,1,1,2] => 2
[2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [1,1,1,1,2] => [2,1,1,1,1] => 4
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => [1,1,1,1,1,1] => 0
[7] => [[1,2,3,4,5,6,7]] => [7] => [7] => 0
[6,1] => [[1,3,4,5,6,7],[2]] => [1,6] => [6,1] => 1
[5,2] => [[1,2,5,6,7],[3,4]] => [2,5] => [5,2] => 1
[5,1,1] => [[1,4,5,6,7],[2],[3]] => [1,1,5] => [5,1,1] => 2
[4,3] => [[1,2,3,7],[4,5,6]] => [3,4] => [4,3] => 1
[4,2,1] => [[1,3,6,7],[2,5],[4]] => [1,2,4] => [4,1,2] => 2
[4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => [1,1,1,4] => [4,1,1,1] => 3
[3,3,1] => [[1,3,4],[2,6,7],[5]] => [1,3,3] => [3,1,3] => 1
[3,2,2] => [[1,2,7],[3,4],[5,6]] => [2,2,3] => [3,2,2] => 2
[3,2,1,1] => [[1,4,7],[2,6],[3],[5]] => [1,1,2,3] => [3,1,1,2] => 3
[3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => [1,1,1,1,3] => [3,1,1,1,1] => 4
[2,2,2,1] => [[1,3],[2,5],[4,7],[6]] => [1,2,2,2] => [2,1,2,2] => 1
[2,2,1,1,1] => [[1,5],[2,7],[3],[4],[6]] => [1,1,1,2,2] => [2,1,1,1,2] => 3
[2,1,1,1,1,1] => [[1,7],[2],[3],[4],[5],[6]] => [1,1,1,1,1,2] => [2,1,1,1,1,1] => 5
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 0
[8] => [[1,2,3,4,5,6,7,8]] => [8] => [8] => 0
[7,1] => [[1,3,4,5,6,7,8],[2]] => [1,7] => [7,1] => 1
[6,2] => [[1,2,5,6,7,8],[3,4]] => [2,6] => [6,2] => 1
[6,1,1] => [[1,4,5,6,7,8],[2],[3]] => [1,1,6] => [6,1,1] => 2
[5,3] => [[1,2,3,7,8],[4,5,6]] => [3,5] => [5,3] => 1
[5,2,1] => [[1,3,6,7,8],[2,5],[4]] => [1,2,5] => [5,1,2] => 2
[5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => [1,1,1,5] => [5,1,1,1] => 3
[4,4] => [[1,2,3,4],[5,6,7,8]] => [4,4] => [4,4] => 0
[4,3,1] => [[1,3,4,8],[2,6,7],[5]] => [1,3,4] => [4,1,3] => 2
[4,2,2] => [[1,2,7,8],[3,4],[5,6]] => [2,2,4] => [4,2,2] => 2
[4,2,1,1] => [[1,4,7,8],[2,6],[3],[5]] => [1,1,2,4] => [4,1,1,2] => 3
[4,1,1,1,1] => [[1,6,7,8],[2],[3],[4],[5]] => [1,1,1,1,4] => [4,1,1,1,1] => 4
[3,3,2] => [[1,2,5],[3,4,8],[6,7]] => [2,3,3] => [3,2,3] => 1
[3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => [1,1,3,3] => [3,1,1,3] => 2
[3,2,2,1] => [[1,3,8],[2,5],[4,7],[6]] => [1,2,2,3] => [3,1,2,2] => 3
[3,2,1,1,1] => [[1,5,8],[2,7],[3],[4],[6]] => [1,1,1,2,3] => [3,1,1,1,2] => 4
[3,1,1,1,1,1] => [[1,7,8],[2],[3],[4],[5],[6]] => [1,1,1,1,1,3] => [3,1,1,1,1,1] => 5
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => [2,2,2,2] => 0
[2,2,2,1,1] => [[1,4],[2,6],[3,8],[5],[7]] => [1,1,2,2,2] => [2,1,1,2,2] => 2
[2,2,1,1,1,1] => [[1,6],[2,8],[3],[4],[5],[7]] => [1,1,1,1,2,2] => [2,1,1,1,1,2] => 4
[2,1,1,1,1,1,1] => [[1,8],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,2] => [2,1,1,1,1,1,1] => 6
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1] => 0
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => [9] => 0
[8,1] => [[1,3,4,5,6,7,8,9],[2]] => [1,8] => [8,1] => 1
[7,2] => [[1,2,5,6,7,8,9],[3,4]] => [2,7] => [7,2] => 1
[7,1,1] => [[1,4,5,6,7,8,9],[2],[3]] => [1,1,7] => [7,1,1] => 2
[6,3] => [[1,2,3,7,8,9],[4,5,6]] => [3,6] => [6,3] => 1
[6,2,1] => [[1,3,6,7,8,9],[2,5],[4]] => [1,2,6] => [6,1,2] => 2
[6,1,1,1] => [[1,5,6,7,8,9],[2],[3],[4]] => [1,1,1,6] => [6,1,1,1] => 3
[5,4] => [[1,2,3,4,9],[5,6,7,8]] => [4,5] => [5,4] => 1
[5,3,1] => [[1,3,4,8,9],[2,6,7],[5]] => [1,3,5] => [5,1,3] => 2
[5,2,2] => [[1,2,7,8,9],[3,4],[5,6]] => [2,2,5] => [5,2,2] => 2
[5,2,1,1] => [[1,4,7,8,9],[2,6],[3],[5]] => [1,1,2,5] => [5,1,1,2] => 3
[5,1,1,1,1] => [[1,6,7,8,9],[2],[3],[4],[5]] => [1,1,1,1,5] => [5,1,1,1,1] => 4
[4,4,1] => [[1,3,4,5],[2,7,8,9],[6]] => [1,4,4] => [4,1,4] => 1
[4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => [2,3,4] => [4,2,3] => 2
[4,3,1,1] => [[1,4,5,9],[2,7,8],[3],[6]] => [1,1,3,4] => [4,1,1,3] => 3
[4,2,2,1] => [[1,3,8,9],[2,5],[4,7],[6]] => [1,2,2,4] => [4,1,2,2] => 3
[4,2,1,1,1] => [[1,5,8,9],[2,7],[3],[4],[6]] => [1,1,1,2,4] => [4,1,1,1,2] => 4
[4,1,1,1,1,1] => [[1,7,8,9],[2],[3],[4],[5],[6]] => [1,1,1,1,1,4] => [4,1,1,1,1,1] => 5
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => [3,3,3] => 0
[3,3,2,1] => [[1,3,6],[2,5,9],[4,8],[7]] => [1,2,3,3] => [3,1,2,3] => 2
[3,3,1,1,1] => [[1,5,6],[2,8,9],[3],[4],[7]] => [1,1,1,3,3] => [3,1,1,1,3] => 3
[3,2,2,2] => [[1,2,9],[3,4],[5,6],[7,8]] => [2,2,2,3] => [3,2,2,2] => 3
[3,2,2,1,1] => [[1,4,9],[2,6],[3,8],[5],[7]] => [1,1,2,2,3] => [3,1,1,2,2] => 4
[3,2,1,1,1,1] => [[1,6,9],[2,8],[3],[4],[5],[7]] => [1,1,1,1,2,3] => [3,1,1,1,1,2] => 5
[3,1,1,1,1,1,1] => [[1,8,9],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,3] => [3,1,1,1,1,1,1] => 6
[2,2,2,2,1] => [[1,3],[2,5],[4,7],[6,9],[8]] => [1,2,2,2,2] => [2,1,2,2,2] => 1
[2,2,2,1,1,1] => [[1,5],[2,7],[3,9],[4],[6],[8]] => [1,1,1,2,2,2] => [2,1,1,1,2,2] => 3
[2,2,1,1,1,1,1] => [[1,7],[2,9],[3],[4],[5],[6],[8]] => [1,1,1,1,1,2,2] => [2,1,1,1,1,1,2] => 5
[2,1,1,1,1,1,1,1] => [[1,9],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,2] => [2,1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => 0
[9,1] => [[1,3,4,5,6,7,8,9,10],[2]] => [1,9] => [9,1] => 1
[8,1,1] => [[1,4,5,6,7,8,9,10],[2],[3]] => [1,1,8] => [8,1,1] => 2
[5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => [5,5] => [5,5] => 0
[4,4,1,1] => [[1,4,5,6],[2,8,9,10],[3],[7]] => [1,1,4,4] => [4,1,1,4] => 2
[3,3,2,2] => [[1,2,7],[3,4,10],[5,6],[8,9]] => [2,2,3,3] => [3,2,2,3] => 2
>>> Load all 111 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of inversions of an integer composition.
This is the number of pairs $(i,j)$ such that $i < j$ and $c_i > c_j$.
This is the number of pairs $(i,j)$ such that $i < j$ and $c_i > c_j$.
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau $T$ the composition $(c_1,\dots,c_k)$, such that $k$ is minimal and the numbers $c_1+\dots+c_i + 1,\dots,c_1+\dots+c_{i+1}$ form a horizontal strip in $T$ for all $i$.
We associate to a standard Young tableau $T$ the composition $(c_1,\dots,c_k)$, such that $k$ is minimal and the numbers $c_1+\dots+c_i + 1,\dots,c_1+\dots+c_{i+1}$ form a horizontal strip in $T$ for all $i$.
Map
rotate back to front
Description
The back to front rotation of an integer composition.
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau $T$ labeled down (in English convention) each column to the shape of a partition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!