Identifier
Values
[1] => [[1]] => [1] => [1] => 0
[2] => [[1,2]] => [2] => [2] => 0
[1,1] => [[1],[2]] => [1,1] => [1,1] => 0
[3] => [[1,2,3]] => [3] => [3] => 0
[2,1] => [[1,3],[2]] => [1,2] => [2,1] => 1
[1,1,1] => [[1],[2],[3]] => [1,1,1] => [1,1,1] => 0
[4] => [[1,2,3,4]] => [4] => [4] => 0
[3,1] => [[1,3,4],[2]] => [1,3] => [3,1] => 1
[2,2] => [[1,2],[3,4]] => [2,2] => [2,2] => 0
[2,1,1] => [[1,4],[2],[3]] => [1,1,2] => [2,1,1] => 2
[1,1,1,1] => [[1],[2],[3],[4]] => [1,1,1,1] => [1,1,1,1] => 0
[5] => [[1,2,3,4,5]] => [5] => [5] => 0
[4,1] => [[1,3,4,5],[2]] => [1,4] => [4,1] => 1
[3,2] => [[1,2,5],[3,4]] => [2,3] => [3,2] => 1
[3,1,1] => [[1,4,5],[2],[3]] => [1,1,3] => [3,1,1] => 2
[2,2,1] => [[1,3],[2,5],[4]] => [1,2,2] => [2,1,2] => 1
[2,1,1,1] => [[1,5],[2],[3],[4]] => [1,1,1,2] => [2,1,1,1] => 3
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [1,1,1,1,1] => [1,1,1,1,1] => 0
[6] => [[1,2,3,4,5,6]] => [6] => [6] => 0
[5,1] => [[1,3,4,5,6],[2]] => [1,5] => [5,1] => 1
[4,2] => [[1,2,5,6],[3,4]] => [2,4] => [4,2] => 1
[4,1,1] => [[1,4,5,6],[2],[3]] => [1,1,4] => [4,1,1] => 2
[3,3] => [[1,2,3],[4,5,6]] => [3,3] => [3,3] => 0
[3,2,1] => [[1,3,6],[2,5],[4]] => [1,2,3] => [3,1,2] => 2
[3,1,1,1] => [[1,5,6],[2],[3],[4]] => [1,1,1,3] => [3,1,1,1] => 3
[2,2,2] => [[1,2],[3,4],[5,6]] => [2,2,2] => [2,2,2] => 0
[2,2,1,1] => [[1,4],[2,6],[3],[5]] => [1,1,2,2] => [2,1,1,2] => 2
[2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [1,1,1,1,2] => [2,1,1,1,1] => 4
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => [1,1,1,1,1,1] => 0
[7] => [[1,2,3,4,5,6,7]] => [7] => [7] => 0
[6,1] => [[1,3,4,5,6,7],[2]] => [1,6] => [6,1] => 1
[5,2] => [[1,2,5,6,7],[3,4]] => [2,5] => [5,2] => 1
[5,1,1] => [[1,4,5,6,7],[2],[3]] => [1,1,5] => [5,1,1] => 2
[4,3] => [[1,2,3,7],[4,5,6]] => [3,4] => [4,3] => 1
[4,2,1] => [[1,3,6,7],[2,5],[4]] => [1,2,4] => [4,1,2] => 2
[4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => [1,1,1,4] => [4,1,1,1] => 3
[3,3,1] => [[1,3,4],[2,6,7],[5]] => [1,3,3] => [3,1,3] => 1
[3,2,2] => [[1,2,7],[3,4],[5,6]] => [2,2,3] => [3,2,2] => 2
[3,2,1,1] => [[1,4,7],[2,6],[3],[5]] => [1,1,2,3] => [3,1,1,2] => 3
[3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => [1,1,1,1,3] => [3,1,1,1,1] => 4
[2,2,2,1] => [[1,3],[2,5],[4,7],[6]] => [1,2,2,2] => [2,1,2,2] => 1
[2,2,1,1,1] => [[1,5],[2,7],[3],[4],[6]] => [1,1,1,2,2] => [2,1,1,1,2] => 3
[2,1,1,1,1,1] => [[1,7],[2],[3],[4],[5],[6]] => [1,1,1,1,1,2] => [2,1,1,1,1,1] => 5
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 0
[8] => [[1,2,3,4,5,6,7,8]] => [8] => [8] => 0
[7,1] => [[1,3,4,5,6,7,8],[2]] => [1,7] => [7,1] => 1
[6,2] => [[1,2,5,6,7,8],[3,4]] => [2,6] => [6,2] => 1
[6,1,1] => [[1,4,5,6,7,8],[2],[3]] => [1,1,6] => [6,1,1] => 2
[5,3] => [[1,2,3,7,8],[4,5,6]] => [3,5] => [5,3] => 1
[5,2,1] => [[1,3,6,7,8],[2,5],[4]] => [1,2,5] => [5,1,2] => 2
[5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => [1,1,1,5] => [5,1,1,1] => 3
[4,4] => [[1,2,3,4],[5,6,7,8]] => [4,4] => [4,4] => 0
[4,3,1] => [[1,3,4,8],[2,6,7],[5]] => [1,3,4] => [4,1,3] => 2
[4,2,2] => [[1,2,7,8],[3,4],[5,6]] => [2,2,4] => [4,2,2] => 2
[4,2,1,1] => [[1,4,7,8],[2,6],[3],[5]] => [1,1,2,4] => [4,1,1,2] => 3
[4,1,1,1,1] => [[1,6,7,8],[2],[3],[4],[5]] => [1,1,1,1,4] => [4,1,1,1,1] => 4
[3,3,2] => [[1,2,5],[3,4,8],[6,7]] => [2,3,3] => [3,2,3] => 1
[3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => [1,1,3,3] => [3,1,1,3] => 2
[3,2,2,1] => [[1,3,8],[2,5],[4,7],[6]] => [1,2,2,3] => [3,1,2,2] => 3
[3,2,1,1,1] => [[1,5,8],[2,7],[3],[4],[6]] => [1,1,1,2,3] => [3,1,1,1,2] => 4
[3,1,1,1,1,1] => [[1,7,8],[2],[3],[4],[5],[6]] => [1,1,1,1,1,3] => [3,1,1,1,1,1] => 5
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => [2,2,2,2] => 0
[2,2,2,1,1] => [[1,4],[2,6],[3,8],[5],[7]] => [1,1,2,2,2] => [2,1,1,2,2] => 2
[2,2,1,1,1,1] => [[1,6],[2,8],[3],[4],[5],[7]] => [1,1,1,1,2,2] => [2,1,1,1,1,2] => 4
[2,1,1,1,1,1,1] => [[1,8],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,2] => [2,1,1,1,1,1,1] => 6
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1] => 0
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => [9] => 0
[8,1] => [[1,3,4,5,6,7,8,9],[2]] => [1,8] => [8,1] => 1
[7,2] => [[1,2,5,6,7,8,9],[3,4]] => [2,7] => [7,2] => 1
[7,1,1] => [[1,4,5,6,7,8,9],[2],[3]] => [1,1,7] => [7,1,1] => 2
[6,3] => [[1,2,3,7,8,9],[4,5,6]] => [3,6] => [6,3] => 1
[6,2,1] => [[1,3,6,7,8,9],[2,5],[4]] => [1,2,6] => [6,1,2] => 2
[6,1,1,1] => [[1,5,6,7,8,9],[2],[3],[4]] => [1,1,1,6] => [6,1,1,1] => 3
[5,4] => [[1,2,3,4,9],[5,6,7,8]] => [4,5] => [5,4] => 1
[5,3,1] => [[1,3,4,8,9],[2,6,7],[5]] => [1,3,5] => [5,1,3] => 2
[5,2,2] => [[1,2,7,8,9],[3,4],[5,6]] => [2,2,5] => [5,2,2] => 2
[5,2,1,1] => [[1,4,7,8,9],[2,6],[3],[5]] => [1,1,2,5] => [5,1,1,2] => 3
[5,1,1,1,1] => [[1,6,7,8,9],[2],[3],[4],[5]] => [1,1,1,1,5] => [5,1,1,1,1] => 4
[4,4,1] => [[1,3,4,5],[2,7,8,9],[6]] => [1,4,4] => [4,1,4] => 1
[4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => [2,3,4] => [4,2,3] => 2
[4,3,1,1] => [[1,4,5,9],[2,7,8],[3],[6]] => [1,1,3,4] => [4,1,1,3] => 3
[4,2,2,1] => [[1,3,8,9],[2,5],[4,7],[6]] => [1,2,2,4] => [4,1,2,2] => 3
[4,2,1,1,1] => [[1,5,8,9],[2,7],[3],[4],[6]] => [1,1,1,2,4] => [4,1,1,1,2] => 4
[4,1,1,1,1,1] => [[1,7,8,9],[2],[3],[4],[5],[6]] => [1,1,1,1,1,4] => [4,1,1,1,1,1] => 5
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => [3,3,3] => 0
[3,3,2,1] => [[1,3,6],[2,5,9],[4,8],[7]] => [1,2,3,3] => [3,1,2,3] => 2
[3,3,1,1,1] => [[1,5,6],[2,8,9],[3],[4],[7]] => [1,1,1,3,3] => [3,1,1,1,3] => 3
[3,2,2,2] => [[1,2,9],[3,4],[5,6],[7,8]] => [2,2,2,3] => [3,2,2,2] => 3
[3,2,2,1,1] => [[1,4,9],[2,6],[3,8],[5],[7]] => [1,1,2,2,3] => [3,1,1,2,2] => 4
[3,2,1,1,1,1] => [[1,6,9],[2,8],[3],[4],[5],[7]] => [1,1,1,1,2,3] => [3,1,1,1,1,2] => 5
[3,1,1,1,1,1,1] => [[1,8,9],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,3] => [3,1,1,1,1,1,1] => 6
[2,2,2,2,1] => [[1,3],[2,5],[4,7],[6,9],[8]] => [1,2,2,2,2] => [2,1,2,2,2] => 1
[2,2,2,1,1,1] => [[1,5],[2,7],[3,9],[4],[6],[8]] => [1,1,1,2,2,2] => [2,1,1,1,2,2] => 3
[2,2,1,1,1,1,1] => [[1,7],[2,9],[3],[4],[5],[6],[8]] => [1,1,1,1,1,2,2] => [2,1,1,1,1,1,2] => 5
[2,1,1,1,1,1,1,1] => [[1,9],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,2] => [2,1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => 0
[9,1] => [[1,3,4,5,6,7,8,9,10],[2]] => [1,9] => [9,1] => 1
[8,1,1] => [[1,4,5,6,7,8,9,10],[2],[3]] => [1,1,8] => [8,1,1] => 2
[5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => [5,5] => [5,5] => 0
[4,4,1,1] => [[1,4,5,6],[2,8,9,10],[3],[7]] => [1,1,4,4] => [4,1,1,4] => 2
[3,3,2,2] => [[1,2,7],[3,4,10],[5,6],[8,9]] => [2,2,3,3] => [3,2,2,3] => 2
>>> Load all 111 entries. <<<
[3,3,1,1,1,1] => [[1,6,7],[2,9,10],[3],[4],[5],[8]] => [1,1,1,1,3,3] => [3,1,1,1,1,3] => 4
[2,2,2,2,1,1] => [[1,4],[2,6],[3,8],[5,10],[7],[9]] => [1,1,2,2,2,2] => [2,1,1,2,2,2] => 2
[2,2,1,1,1,1,1,1] => [[1,8],[2,10],[3],[4],[5],[6],[7],[9]] => [1,1,1,1,1,1,2,2] => [2,1,1,1,1,1,1,2] => 6
[1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => 0
[6,6] => [[1,2,3,4,5,6],[7,8,9,10,11,12]] => [6,6] => [6,6] => 0
[5,5,1,1] => [[1,4,5,6,7],[2,9,10,11,12],[3],[8]] => [1,1,5,5] => [5,1,1,5] => 2
[4,4,2,2] => [[1,2,7,8],[3,4,11,12],[5,6],[9,10]] => [2,2,4,4] => [4,2,2,4] => 2
[3,3,2,2,1,1] => [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]] => [1,1,2,2,3,3] => [3,1,1,2,2,3] => 4
[2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => [2,2,2,2,2,2] => [2,2,2,2,2,2] => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]] => [1,1,1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1,1,1] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of inversions of an integer composition.
This is the number of pairs $(i,j)$ such that $i < j$ and $c_i > c_j$.
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau $T$ the composition $(c_1,\dots,c_k)$, such that $k$ is minimal and the numbers $c_1+\dots+c_i + 1,\dots,c_1+\dots+c_{i+1}$ form a horizontal strip in $T$ for all $i$.
Map
rotate back to front
Description
The back to front rotation of an integer composition.
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau $T$ labeled down (in English convention) each column to the shape of a partition.