Identifier
-
Mp00128:
Set partitions
—to composition⟶
Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤ
Values
{{1}} => [1] => [1] => ([],1) => 1
{{1},{2}} => [1,1] => [1,1] => ([(0,1)],2) => 1
{{1},{2,3}} => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 1
{{1},{2},{3}} => [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
{{1,2},{3},{4}} => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3},{2},{4}} => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1},{2,3,4}} => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
{{1,4},{2},{3}} => [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1},{2},{3,4}} => [1,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1},{2},{3},{4}} => [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
{{1,2,3},{4},{5}} => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,2,4},{3},{5}} => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,2,5},{3},{4}} => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,2},{3},{4,5}} => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,2},{3},{4},{5}} => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,3,4},{2},{5}} => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,3,5},{2},{4}} => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,3},{2},{4,5}} => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,3},{2},{4},{5}} => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2,3,4,5}} => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
{{1},{2,3},{4},{5}} => [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,4,5},{2},{3}} => [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,4},{2},{3,5}} => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,4},{2},{3},{5}} => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2,4},{3},{5}} => [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,5},{2},{3,4}} => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2},{3,4,5}} => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,5},{2},{3},{4}} => [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2,5},{3},{4}} => [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2},{3},{4,5}} => [1,1,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2},{3},{4},{5}} => [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,2,3,4},{5},{6}} => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,3,5},{4},{6}} => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,3,6},{4},{5}} => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,3},{4},{5,6}} => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,2,3},{4},{5},{6}} => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,2,4,5},{3},{6}} => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,4,6},{3},{5}} => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,4},{3},{5,6}} => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,2,4},{3},{5},{6}} => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,2},{3,4},{5},{6}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,5,6},{3},{4}} => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,5},{3},{4,6}} => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,2,5},{3},{4},{6}} => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,2},{3,5},{4},{6}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,6},{3},{4,5}} => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,2},{3},{4,5,6}} => [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,6},{3},{4},{5}} => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,2},{3,6},{4},{5}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2},{3},{4},{5,6}} => [2,1,1,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2},{3},{4},{5},{6}} => [2,1,1,1,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3,4,5},{2},{6}} => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,3,4,6},{2},{5}} => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,3,4},{2},{5,6}} => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,3,4},{2},{5},{6}} => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,3},{2,4},{5},{6}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3,5,6},{2},{4}} => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,3,5},{2},{4,6}} => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,3,5},{2},{4},{6}} => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,3},{2,5},{4},{6}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3,6},{2},{4,5}} => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,3},{2},{4,5,6}} => [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3,6},{2},{4},{5}} => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,3},{2,6},{4},{5}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3},{2},{4},{5,6}} => [2,1,1,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3},{2},{4},{5},{6}} => [2,1,1,1,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4},{2,3},{5},{6}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,3,4,5,6}} => [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
{{1},{2,3,4},{5},{6}} => [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,5},{2,3},{4},{6}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,3,5},{4},{6}} => [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,6},{2,3},{4},{5}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,3,6},{4},{5}} => [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1},{2,3},{4},{5,6}} => [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,3},{4},{5},{6}} => [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4,5,6},{2},{3}} => [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,4,5},{2},{3,6}} => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,4,5},{2},{3},{6}} => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,4},{2,5},{3},{6}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4,6},{2},{3,5}} => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,4},{2},{3,5,6}} => [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4,6},{2},{3},{5}} => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,4},{2,6},{3},{5}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4},{2},{3},{5,6}} => [2,1,1,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4},{2},{3},{5},{6}} => [2,1,1,1,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5},{2,4},{3},{6}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,4,5},{3},{6}} => [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,6},{2,4},{3},{5}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,4,6},{3},{5}} => [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1},{2,4},{3},{5,6}} => [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,4},{3},{5},{6}} => [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5,6},{2},{3,4}} => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,5},{2},{3,4,6}} => [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,6},{2},{3,4,5}} => [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2},{3,4,5,6}} => [1,1,4] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1},{2},{3,4},{5},{6}} => [1,1,2,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5,6},{2},{3},{4}} => [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,5},{2,6},{3},{4}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5},{2},{3},{4,6}} => [2,1,1,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5},{2},{3},{4},{6}} => [2,1,1,1,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,6},{2,5},{3},{4}} => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
>>> Load all 467 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Map
to composition
Description
The integer composition of block sizes of a set partition.
For a set partition of $\{1,2,\dots,n\}$, this is the integer composition of $n$ obtained by sorting the blocks by their minimal element and then taking the block sizes.
For a set partition of $\{1,2,\dots,n\}$, this is the integer composition of $n$ obtained by sorting the blocks by their minimal element and then taking the block sizes.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
rotate back to front
Description
The back to front rotation of an integer composition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!