Identifier
-
Mp00051:
Ordered trees
—to Dyck path⟶
Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤ
Values
[[]] => [1,0] => [1] => ([],1) => 1
[[],[]] => [1,0,1,0] => [1,1] => ([(0,1)],2) => 2
[[],[],[]] => [1,0,1,0,1,0] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
[[[]],[]] => [1,1,0,0,1,0] => [2,1] => ([(0,2),(1,2)],3) => 3
[[],[],[],[]] => [1,0,1,0,1,0,1,0] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[[],[[]],[]] => [1,0,1,1,0,0,1,0] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
[[[]],[],[]] => [1,1,0,0,1,0,1,0] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[[],[]],[]] => [1,1,0,1,0,0,1,0] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[[[[]]],[]] => [1,1,1,0,0,0,1,0] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[],[[]],[]] => [1,0,1,0,1,1,0,0,1,0] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[[]],[],[]] => [1,0,1,1,0,0,1,0,1,0] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[[],[]],[]] => [1,0,1,1,0,1,0,0,1,0] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[[[]]],[]] => [1,0,1,1,1,0,0,0,1,0] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[]],[],[],[]] => [1,1,0,0,1,0,1,0,1,0] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[[]],[[]],[]] => [1,1,0,0,1,1,0,0,1,0] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[[[],[]],[],[]] => [1,1,0,1,0,0,1,0,1,0] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[[[]]],[],[]] => [1,1,1,0,0,0,1,0,1,0] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[[],[],[]],[]] => [1,1,0,1,0,1,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[[[],[[]]],[]] => [1,1,0,1,1,0,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[[[[]],[]],[]] => [1,1,1,0,0,1,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[[[[],[]]],[]] => [1,1,1,0,1,0,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[[[[[]]]],[]] => [1,1,1,1,0,0,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[[],[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[],[[]],[]] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[],[[]],[],[]] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[],[[],[]],[]] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[],[[[]]],[]] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[]],[],[],[]] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[]],[[]],[]] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[[],[[],[]],[],[]] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[[]]],[],[]] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[],[],[]],[]] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[],[[]]],[]] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[[]],[]],[]] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[[],[]]],[]] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[[[]]]],[]] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[]],[],[],[],[]] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[]],[],[[]],[]] => [1,1,0,0,1,0,1,1,0,0,1,0] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[]],[[]],[],[]] => [1,1,0,0,1,1,0,0,1,0,1,0] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[]],[[],[]],[]] => [1,1,0,0,1,1,0,1,0,0,1,0] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[]],[[[]]],[]] => [1,1,0,0,1,1,1,0,0,0,1,0] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[],[]],[],[],[]] => [1,1,0,1,0,0,1,0,1,0,1,0] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[[]]],[],[],[]] => [1,1,1,0,0,0,1,0,1,0,1,0] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[]],[[]],[]] => [1,1,0,1,0,0,1,1,0,0,1,0] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[]]],[[]],[]] => [1,1,1,0,0,0,1,1,0,0,1,0] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[],[],[]],[],[]] => [1,1,0,1,0,1,0,0,1,0,1,0] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[[]]],[],[]] => [1,1,0,1,1,0,0,0,1,0,1,0] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[[]],[]],[],[]] => [1,1,1,0,0,1,0,0,1,0,1,0] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[[],[]]],[],[]] => [1,1,1,0,1,0,0,0,1,0,1,0] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[[[]]]],[],[]] => [1,1,1,1,0,0,0,0,1,0,1,0] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[],[],[]],[]] => [1,1,0,1,0,1,0,1,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[],[],[[]]],[]] => [1,1,0,1,0,1,1,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[],[[]],[]],[]] => [1,1,0,1,1,0,0,1,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[],[[],[]]],[]] => [1,1,0,1,1,0,1,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[],[[[]]]],[]] => [1,1,0,1,1,1,0,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[[]],[],[]],[]] => [1,1,1,0,0,1,0,1,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[[]],[[]]],[]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[[],[]],[]],[]] => [1,1,1,0,1,0,0,1,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[[[]]],[]],[]] => [1,1,1,1,0,0,0,1,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[[],[],[]]],[]] => [1,1,1,0,1,0,1,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[[],[[]]]],[]] => [1,1,1,0,1,1,0,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[[[]],[]]],[]] => [1,1,1,1,0,0,1,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[[[],[]]]],[]] => [1,1,1,1,0,1,0,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[[[[[]]]]],[]] => [1,1,1,1,1,0,0,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
[[],[],[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[],[],[[]],[]] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[],[[]],[],[]] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[],[[],[]],[]] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[],[[[]]],[]] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[]],[],[],[]] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[]],[[]],[]] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[],[[],[]],[],[]] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[[]]],[],[]] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[],[],[]],[]] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[],[[]]],[]] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[[]],[]],[]] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[[],[]]],[]] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[[[]]]],[]] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[]],[],[],[],[]] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[]],[],[[]],[]] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[[]],[[]],[],[]] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[[]],[[],[]],[]] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[[]],[[[]]],[]] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[[],[]],[],[],[]] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[]]],[],[],[]] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[]],[[]],[]] => [1,0,1,1,0,1,0,0,1,1,0,0,1,0] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[[[]]],[[]],[]] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[[],[],[]],[],[]] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[[]]],[],[]] => [1,0,1,1,0,1,1,0,0,0,1,0,1,0] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[]],[]],[],[]] => [1,0,1,1,1,0,0,1,0,0,1,0,1,0] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[],[]]],[],[]] => [1,0,1,1,1,0,1,0,0,0,1,0,1,0] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[[]]]],[],[]] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[],[],[]],[]] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[],[[]]],[]] => [1,0,1,1,0,1,0,1,1,0,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[[]],[]],[]] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[[],[]]],[]] => [1,0,1,1,0,1,1,0,1,0,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[[[]]]],[]] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[]],[],[]],[]] => [1,0,1,1,1,0,0,1,0,1,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[]],[[]]],[]] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[],[]],[]],[]] => [1,0,1,1,1,0,1,0,0,1,0,0,1,0] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Map
touch composition
Description
Sends a Dyck path to its touch composition given by the composition of lengths of its touch points.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
to Dyck path
Description
Return the Dyck path of the corresponding ordered tree induced by the recurrence of the Catalan numbers, see wikipedia:Catalan_number.
This sends the maximal height of the Dyck path to the depth of the tree.
This sends the maximal height of the Dyck path to the depth of the tree.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!