Values
[1] => [1] => [[1],[]] => [1] => 1
[1,1] => [1,1] => [[1,1],[]] => [1,1] => 1
[2] => [2] => [[2],[]] => [2] => 1
[1,1,1] => [1,1,1] => [[1,1,1],[]] => [1,1,1] => 1
[1,2] => [2,1] => [[2,2],[1]] => [2,2] => 1
[2,1] => [1,2] => [[2,1],[]] => [2,1] => 1
[3] => [3] => [[3],[]] => [3] => 1
[1,1,1,1] => [1,1,1,1] => [[1,1,1,1],[]] => [1,1,1,1] => 1
[1,1,2] => [1,2,1] => [[2,2,1],[1]] => [2,2,1] => 1
[1,2,1] => [2,1,1] => [[2,2,2],[1,1]] => [2,2,2] => 1
[1,3] => [3,1] => [[3,3],[2]] => [3,3] => 1
[2,1,1] => [1,1,2] => [[2,1,1],[]] => [2,1,1] => 1
[2,2] => [2,2] => [[3,2],[1]] => [3,2] => 1
[3,1] => [1,3] => [[3,1],[]] => [3,1] => 1
[4] => [4] => [[4],[]] => [4] => 1
[1,1,1,1,1] => [1,1,1,1,1] => [[1,1,1,1,1],[]] => [1,1,1,1,1] => 1
[1,1,1,2] => [1,1,2,1] => [[2,2,1,1],[1]] => [2,2,1,1] => 1
[1,1,2,1] => [1,2,1,1] => [[2,2,2,1],[1,1]] => [2,2,2,1] => 1
[1,1,3] => [1,3,1] => [[3,3,1],[2]] => [3,3,1] => 1
[1,2,1,1] => [2,1,1,1] => [[2,2,2,2],[1,1,1]] => [2,2,2,2] => 1
[1,2,2] => [2,2,1] => [[3,3,2],[2,1]] => [3,3,2] => 1
[1,3,1] => [3,1,1] => [[3,3,3],[2,2]] => [3,3,3] => 1
[1,4] => [4,1] => [[4,4],[3]] => [4,4] => 1
[2,1,1,1] => [1,1,1,2] => [[2,1,1,1],[]] => [2,1,1,1] => 1
[2,1,2] => [1,2,2] => [[3,2,1],[1]] => [3,2,1] => 2
[2,2,1] => [2,1,2] => [[3,2,2],[1,1]] => [3,2,2] => 1
[2,3] => [3,2] => [[4,3],[2]] => [4,3] => 1
[3,1,1] => [1,1,3] => [[3,1,1],[]] => [3,1,1] => 1
[3,2] => [2,3] => [[4,2],[1]] => [4,2] => 1
[4,1] => [1,4] => [[4,1],[]] => [4,1] => 1
[5] => [5] => [[5],[]] => [5] => 1
[1,1,1,1,1,1] => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => [1,1,1,1,1,1] => 1
[1,1,1,1,2] => [1,1,1,2,1] => [[2,2,1,1,1],[1]] => [2,2,1,1,1] => 1
[1,1,1,2,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => [2,2,2,1,1] => 1
[1,1,1,3] => [1,1,3,1] => [[3,3,1,1],[2]] => [3,3,1,1] => 3
[1,1,2,1,1] => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => [2,2,2,2,1] => 1
[1,1,2,2] => [1,2,2,1] => [[3,3,2,1],[2,1]] => [3,3,2,1] => 2
[1,1,3,1] => [1,3,1,1] => [[3,3,3,1],[2,2]] => [3,3,3,1] => 2
[1,1,4] => [1,4,1] => [[4,4,1],[3]] => [4,4,1] => 1
[1,2,1,1,1] => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => [2,2,2,2,2] => 1
[1,2,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]] => [3,3,2,2] => 1
[1,2,2,1] => [2,2,1,1] => [[3,3,3,2],[2,2,1]] => [3,3,3,2] => 1
[1,2,3] => [2,3,1] => [[4,4,2],[3,1]] => [4,4,2] => 1
[1,3,2] => [3,2,1] => [[4,4,3],[3,2]] => [4,4,3] => 1
[1,5] => [5,1] => [[5,5],[4]] => [5,5] => 1
[2,1,1,1,1] => [1,1,1,1,2] => [[2,1,1,1,1],[]] => [2,1,1,1,1] => 1
[2,1,1,2] => [1,1,2,2] => [[3,2,1,1],[1]] => [3,2,1,1] => 2
[2,1,2,1] => [1,2,1,2] => [[3,2,2,1],[1,1]] => [3,2,2,1] => 2
[2,1,3] => [1,3,2] => [[4,3,1],[2]] => [4,3,1] => 2
[2,2,1,1] => [2,1,1,2] => [[3,2,2,2],[1,1,1]] => [3,2,2,2] => 1
[2,2,2] => [2,2,2] => [[4,3,2],[2,1]] => [4,3,2] => 2
[2,3,1] => [3,1,2] => [[4,3,3],[2,2]] => [4,3,3] => 2
[2,4] => [4,2] => [[5,4],[3]] => [5,4] => 1
[3,1,1,1] => [1,1,1,3] => [[3,1,1,1],[]] => [3,1,1,1] => 1
[3,1,2] => [1,2,3] => [[4,2,1],[1]] => [4,2,1] => 2
[3,2,1] => [2,1,3] => [[4,2,2],[1,1]] => [4,2,2] => 3
[3,3] => [3,3] => [[5,3],[2]] => [5,3] => 1
[4,1,1] => [1,1,4] => [[4,1,1],[]] => [4,1,1] => 1
[4,2] => [2,4] => [[5,2],[1]] => [5,2] => 1
[5,1] => [1,5] => [[5,1],[]] => [5,1] => 1
[6] => [6] => [[6],[]] => [6] => 1
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => [1,1,1,1,1,1,1] => 1
[1,1,1,1,1,2] => [1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]] => [2,2,1,1,1,1] => 1
[1,1,1,1,2,1] => [1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => [2,2,2,1,1,1] => 1
[1,1,1,1,3] => [1,1,1,3,1] => [[3,3,1,1,1],[2]] => [3,3,1,1,1] => 3
[1,1,1,2,1,1] => [1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => [2,2,2,2,1,1] => 1
[1,1,1,2,2] => [1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => [3,3,2,1,1] => 3
[1,1,1,3,1] => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => [3,3,3,1,1] => 3
[1,1,1,4] => [1,1,4,1] => [[4,4,1,1],[3]] => [4,4,1,1] => 1
[1,1,2,1,2] => [1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => [3,3,2,2,1] => 2
[1,1,2,2,1] => [1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => [3,3,3,2,1] => 2
[1,1,2,3] => [1,2,3,1] => [[4,4,2,1],[3,1]] => [4,4,2,1] => 2
[1,1,3,2] => [1,3,2,1] => [[4,4,3,1],[3,2]] => [4,4,3,1] => 2
[1,2,1,3] => [2,1,3,1] => [[4,4,2,2],[3,1,1]] => [4,4,2,2] => 3
[1,2,2,2] => [2,2,2,1] => [[4,4,3,2],[3,2,1]] => [4,4,3,2] => 2
[2,1,1,1,1,1] => [1,1,1,1,1,2] => [[2,1,1,1,1,1],[]] => [2,1,1,1,1,1] => 1
[2,1,1,1,2] => [1,1,1,2,2] => [[3,2,1,1,1],[1]] => [3,2,1,1,1] => 2
[2,1,1,2,1] => [1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => [3,2,2,1,1] => 2
[2,1,1,3] => [1,1,3,2] => [[4,3,1,1],[2]] => [4,3,1,1] => 2
[2,1,2,1,1] => [1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => [3,2,2,2,1] => 2
[2,1,2,2] => [1,2,2,2] => [[4,3,2,1],[2,1]] => [4,3,2,1] => 4
[2,1,3,1] => [1,3,1,2] => [[4,3,3,1],[2,2]] => [4,3,3,1] => 3
[2,1,4] => [1,4,2] => [[5,4,1],[3]] => [5,4,1] => 2
[2,2,1,2] => [2,1,2,2] => [[4,3,2,2],[2,1,1]] => [4,3,2,2] => 2
[2,2,2,1] => [2,2,1,2] => [[4,3,3,2],[2,2,1]] => [4,3,3,2] => 2
[2,2,3] => [2,3,2] => [[5,4,2],[3,1]] => [5,4,2] => 2
[2,3,2] => [3,2,2] => [[5,4,3],[3,2]] => [5,4,3] => 2
[3,1,1,1,1] => [1,1,1,1,3] => [[3,1,1,1,1],[]] => [3,1,1,1,1] => 1
[3,1,1,2] => [1,1,2,3] => [[4,2,1,1],[1]] => [4,2,1,1] => 2
[3,1,2,1] => [1,2,1,3] => [[4,2,2,1],[1,1]] => [4,2,2,1] => 2
[3,1,3] => [1,3,3] => [[5,3,1],[2]] => [5,3,1] => 2
[3,2,1,1] => [2,1,1,3] => [[4,2,2,2],[1,1,1]] => [4,2,2,2] => 1
[3,2,2] => [2,2,3] => [[5,3,2],[2,1]] => [5,3,2] => 3
[3,3,1] => [3,1,3] => [[5,3,3],[2,2]] => [5,3,3] => 3
[3,4] => [4,3] => [[6,4],[3]] => [6,4] => 1
[4,1,1,1] => [1,1,1,4] => [[4,1,1,1],[]] => [4,1,1,1] => 1
[4,1,2] => [1,2,4] => [[5,2,1],[1]] => [5,2,1] => 2
[4,2,1] => [2,1,4] => [[5,2,2],[1,1]] => [5,2,2] => 3
[4,3] => [3,4] => [[6,3],[2]] => [6,3] => 1
[5,1,1] => [1,1,5] => [[5,1,1],[]] => [5,1,1] => 1
[5,2] => [2,5] => [[6,2],[1]] => [6,2] => 1
>>> Load all 154 entries. <<<
[6,1] => [1,6] => [[6,1],[]] => [6,1] => 1
[7] => [7] => [[7],[]] => [7] => 1
[1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1],[]] => [1,1,1,1,1,1,1,1] => 1
[1,1,1,1,1,1,2] => [1,1,1,1,1,2,1] => [[2,2,1,1,1,1,1],[1]] => [2,2,1,1,1,1,1] => 1
[1,1,1,1,1,2,1] => [1,1,1,1,2,1,1] => [[2,2,2,1,1,1,1],[1,1]] => [2,2,2,1,1,1,1] => 1
[1,1,1,2,1,2] => [1,1,2,1,2,1] => [[3,3,2,2,1,1],[2,1,1]] => [3,3,2,2,1,1] => 3
[1,1,1,2,3] => [1,1,2,3,1] => [[4,4,2,1,1],[3,1]] => [4,4,2,1,1] => 5
[1,1,1,3,2] => [1,1,3,2,1] => [[4,4,3,1,1],[3,2]] => [4,4,3,1,1] => 6
[1,1,2,1,3] => [1,2,1,3,1] => [[4,4,2,2,1],[3,1,1]] => [4,4,2,2,1] => 5
[1,1,2,2,2] => [1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]] => [4,4,3,2,1] => 5
[2,1,1,1,1,1,1] => [1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1],[]] => [2,1,1,1,1,1,1] => 1
[2,1,1,1,1,2] => [1,1,1,1,2,2] => [[3,2,1,1,1,1],[1]] => [3,2,1,1,1,1] => 2
[2,1,1,1,2,1] => [1,1,1,2,1,2] => [[3,2,2,1,1,1],[1,1]] => [3,2,2,1,1,1] => 2
[2,1,1,1,3] => [1,1,1,3,2] => [[4,3,1,1,1],[2]] => [4,3,1,1,1] => 3
[2,1,1,2,2] => [1,1,2,2,2] => [[4,3,2,1,1],[2,1]] => [4,3,2,1,1] => 5
[2,1,1,3,1] => [1,1,3,1,2] => [[4,3,3,1,1],[2,2]] => [4,3,3,1,1] => 5
[2,1,2,1,2] => [1,2,1,2,2] => [[4,3,2,2,1],[2,1,1]] => [4,3,2,2,1] => 4
[2,1,2,2,1] => [1,2,2,1,2] => [[4,3,3,2,1],[2,2,1]] => [4,3,3,2,1] => 4
[2,1,2,3] => [1,2,3,2] => [[5,4,2,1],[3,1]] => [5,4,2,1] => 4
[2,1,3,2] => [1,3,2,2] => [[5,4,3,1],[3,2]] => [5,4,3,1] => 4
[2,2,1,3] => [2,1,3,2] => [[5,4,2,2],[3,1,1]] => [5,4,2,2] => 5
[2,2,2,2] => [2,2,2,2] => [[5,4,3,2],[3,2,1]] => [5,4,3,2] => 5
[3,1,1,1,1,1] => [1,1,1,1,1,3] => [[3,1,1,1,1,1],[]] => [3,1,1,1,1,1] => 1
[3,1,1,3] => [1,1,3,3] => [[5,3,1,1],[2]] => [5,3,1,1] => 3
[3,1,2,2] => [1,2,2,3] => [[5,3,2,1],[2,1]] => [5,3,2,1] => 5
[3,1,3,1] => [1,3,1,3] => [[5,3,3,1],[2,2]] => [5,3,3,1] => 5
[3,2,1,2] => [2,1,2,3] => [[5,3,2,2],[2,1,1]] => [5,3,2,2] => 5
[3,2,2,1] => [2,2,1,3] => [[5,3,3,2],[2,2,1]] => [5,3,3,2] => 6
[3,2,3] => [2,3,3] => [[6,4,2],[3,1]] => [6,4,2] => 3
[4,1,1,1,1] => [1,1,1,1,4] => [[4,1,1,1,1],[]] => [4,1,1,1,1] => 1
[5,1,1,1] => [1,1,1,5] => [[5,1,1,1],[]] => [5,1,1,1] => 1
[6,1,1] => [1,1,6] => [[6,1,1],[]] => [6,1,1] => 1
[7,1] => [1,7] => [[7,1],[]] => [7,1] => 1
[8] => [8] => [[8],[]] => [8] => 1
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1],[]] => [1,1,1,1,1,1,1,1,1] => 1
[2,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1,1],[]] => [2,1,1,1,1,1,1,1] => 1
[3,1,1,1,1,1,1] => [1,1,1,1,1,1,3] => [[3,1,1,1,1,1,1],[]] => [3,1,1,1,1,1,1] => 1
[4,1,1,1,1,1] => [1,1,1,1,1,4] => [[4,1,1,1,1,1],[]] => [4,1,1,1,1,1] => 1
[5,1,1,1,1] => [1,1,1,1,5] => [[5,1,1,1,1],[]] => [5,1,1,1,1] => 1
[6,1,1,1] => [1,1,1,6] => [[6,1,1,1],[]] => [6,1,1,1] => 1
[7,1,1] => [1,1,7] => [[7,1,1],[]] => [7,1,1] => 1
[8,1] => [1,8] => [[8,1],[]] => [8,1] => 1
[9] => [9] => [[9],[]] => [9] => 1
[1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1,1],[]] => [1,1,1,1,1,1,1,1,1,1] => 1
[2,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1,1,1],[]] => [2,1,1,1,1,1,1,1,1] => 1
[3,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,3] => [[3,1,1,1,1,1,1,1],[]] => [3,1,1,1,1,1,1,1] => 1
[4,1,1,1,1,1,1] => [1,1,1,1,1,1,4] => [[4,1,1,1,1,1,1],[]] => [4,1,1,1,1,1,1] => 1
[5,1,1,1,1,1] => [1,1,1,1,1,5] => [[5,1,1,1,1,1],[]] => [5,1,1,1,1,1] => 1
[6,1,1,1,1] => [1,1,1,1,6] => [[6,1,1,1,1],[]] => [6,1,1,1,1] => 1
[7,1,1,1] => [1,1,1,7] => [[7,1,1,1],[]] => [7,1,1,1] => 1
[8,1,1] => [1,1,8] => [[8,1,1],[]] => [8,1,1] => 1
[9,1] => [1,9] => [[9,1],[]] => [9,1] => 1
[10] => [10] => [[10],[]] => [10] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of proper colouring schemes of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
Map
outer shape
Description
The outer shape of the skew partition.
Map
rotate front to back
Description
The front to back rotation of the entries of an integer composition.