Identifier
-
Mp00294:
Standard tableaux
—peak composition⟶
Integer compositions
St000805: Integer compositions ⟶ ℤ
Values
[[1]] => [1] => 1
[[1,2]] => [2] => 1
[[1],[2]] => [2] => 1
[[1,2,3]] => [3] => 1
[[1,3],[2]] => [3] => 1
[[1,2],[3]] => [2,1] => 1
[[1],[2],[3]] => [3] => 1
[[1,2,3,4]] => [4] => 1
[[1,3,4],[2]] => [4] => 1
[[1,2,4],[3]] => [2,2] => 1
[[1,2,3],[4]] => [3,1] => 1
[[1,3],[2,4]] => [3,1] => 1
[[1,2],[3,4]] => [2,2] => 1
[[1,4],[2],[3]] => [4] => 1
[[1,3],[2],[4]] => [3,1] => 1
[[1,2],[3],[4]] => [2,2] => 1
[[1],[2],[3],[4]] => [4] => 1
[[1,2,3,4,5]] => [5] => 1
[[1,3,4,5],[2]] => [5] => 1
[[1,2,4,5],[3]] => [2,3] => 1
[[1,2,3,5],[4]] => [3,2] => 1
[[1,2,3,4],[5]] => [4,1] => 1
[[1,3,5],[2,4]] => [3,2] => 1
[[1,2,5],[3,4]] => [2,3] => 1
[[1,3,4],[2,5]] => [4,1] => 1
[[1,2,4],[3,5]] => [2,2,1] => 1
[[1,2,3],[4,5]] => [3,2] => 1
[[1,4,5],[2],[3]] => [5] => 1
[[1,3,5],[2],[4]] => [3,2] => 1
[[1,2,5],[3],[4]] => [2,3] => 1
[[1,3,4],[2],[5]] => [4,1] => 1
[[1,2,4],[3],[5]] => [2,2,1] => 1
[[1,2,3],[4],[5]] => [3,2] => 1
[[1,4],[2,5],[3]] => [4,1] => 1
[[1,3],[2,5],[4]] => [3,2] => 1
[[1,2],[3,5],[4]] => [2,3] => 1
[[1,3],[2,4],[5]] => [3,2] => 1
[[1,2],[3,4],[5]] => [2,2,1] => 1
[[1,5],[2],[3],[4]] => [5] => 1
[[1,4],[2],[3],[5]] => [4,1] => 1
[[1,3],[2],[4],[5]] => [3,2] => 1
[[1,2],[3],[4],[5]] => [2,3] => 1
[[1],[2],[3],[4],[5]] => [5] => 1
[[1,2,3,4,5,6]] => [6] => 1
[[1,3,4,5,6],[2]] => [6] => 1
[[1,2,4,5,6],[3]] => [2,4] => 1
[[1,2,3,5,6],[4]] => [3,3] => 1
[[1,2,3,4,6],[5]] => [4,2] => 1
[[1,2,3,4,5],[6]] => [5,1] => 1
[[1,3,5,6],[2,4]] => [3,3] => 1
[[1,2,5,6],[3,4]] => [2,4] => 1
[[1,3,4,6],[2,5]] => [4,2] => 1
[[1,2,4,6],[3,5]] => [2,2,2] => 1
[[1,2,3,6],[4,5]] => [3,3] => 1
[[1,3,4,5],[2,6]] => [5,1] => 1
[[1,2,4,5],[3,6]] => [2,3,1] => 1
[[1,2,3,5],[4,6]] => [3,2,1] => 1
[[1,2,3,4],[5,6]] => [4,2] => 1
[[1,4,5,6],[2],[3]] => [6] => 1
[[1,3,5,6],[2],[4]] => [3,3] => 1
[[1,2,5,6],[3],[4]] => [2,4] => 1
[[1,3,4,6],[2],[5]] => [4,2] => 1
[[1,2,4,6],[3],[5]] => [2,2,2] => 1
[[1,2,3,6],[4],[5]] => [3,3] => 1
[[1,3,4,5],[2],[6]] => [5,1] => 1
[[1,2,4,5],[3],[6]] => [2,3,1] => 1
[[1,2,3,5],[4],[6]] => [3,2,1] => 1
[[1,2,3,4],[5],[6]] => [4,2] => 1
[[1,3,5],[2,4,6]] => [3,2,1] => 1
[[1,2,5],[3,4,6]] => [2,3,1] => 1
[[1,3,4],[2,5,6]] => [4,2] => 1
[[1,2,4],[3,5,6]] => [2,2,2] => 1
[[1,2,3],[4,5,6]] => [3,3] => 1
[[1,4,6],[2,5],[3]] => [4,2] => 1
[[1,3,6],[2,5],[4]] => [3,3] => 1
[[1,2,6],[3,5],[4]] => [2,4] => 1
[[1,3,6],[2,4],[5]] => [3,3] => 1
[[1,2,6],[3,4],[5]] => [2,2,2] => 1
[[1,4,5],[2,6],[3]] => [5,1] => 1
[[1,3,5],[2,6],[4]] => [3,2,1] => 1
[[1,2,5],[3,6],[4]] => [2,3,1] => 1
[[1,3,4],[2,6],[5]] => [4,2] => 1
[[1,2,4],[3,6],[5]] => [2,2,2] => 1
[[1,2,3],[4,6],[5]] => [3,3] => 1
[[1,3,5],[2,4],[6]] => [3,2,1] => 1
[[1,2,5],[3,4],[6]] => [2,3,1] => 1
[[1,3,4],[2,5],[6]] => [4,2] => 1
[[1,2,4],[3,5],[6]] => [2,2,2] => 1
[[1,2,3],[4,5],[6]] => [3,2,1] => 1
[[1,5,6],[2],[3],[4]] => [6] => 1
[[1,4,6],[2],[3],[5]] => [4,2] => 1
[[1,3,6],[2],[4],[5]] => [3,3] => 1
[[1,2,6],[3],[4],[5]] => [2,4] => 1
[[1,4,5],[2],[3],[6]] => [5,1] => 1
[[1,3,5],[2],[4],[6]] => [3,2,1] => 1
[[1,2,5],[3],[4],[6]] => [2,3,1] => 1
[[1,3,4],[2],[5],[6]] => [4,2] => 1
[[1,2,4],[3],[5],[6]] => [2,2,2] => 1
[[1,2,3],[4],[5],[6]] => [3,3] => 1
[[1,4],[2,5],[3,6]] => [4,2] => 1
[[1,3],[2,5],[4,6]] => [3,2,1] => 1
>>> Load all 1298 entries. <<<[[1,2],[3,5],[4,6]] => [2,3,1] => 1
[[1,3],[2,4],[5,6]] => [3,3] => 1
[[1,2],[3,4],[5,6]] => [2,2,2] => 1
[[1,5],[2,6],[3],[4]] => [5,1] => 1
[[1,4],[2,6],[3],[5]] => [4,2] => 1
[[1,3],[2,6],[4],[5]] => [3,3] => 1
[[1,2],[3,6],[4],[5]] => [2,4] => 1
[[1,4],[2,5],[3],[6]] => [4,2] => 1
[[1,3],[2,5],[4],[6]] => [3,2,1] => 1
[[1,2],[3,5],[4],[6]] => [2,3,1] => 1
[[1,3],[2,4],[5],[6]] => [3,3] => 1
[[1,2],[3,4],[5],[6]] => [2,2,2] => 1
[[1,6],[2],[3],[4],[5]] => [6] => 1
[[1,5],[2],[3],[4],[6]] => [5,1] => 1
[[1,4],[2],[3],[5],[6]] => [4,2] => 1
[[1,3],[2],[4],[5],[6]] => [3,3] => 1
[[1,2],[3],[4],[5],[6]] => [2,4] => 1
[[1],[2],[3],[4],[5],[6]] => [6] => 1
[[1,2,3,4,5,6,7]] => [7] => 1
[[1,3,4,5,6,7],[2]] => [7] => 1
[[1,2,4,5,6,7],[3]] => [2,5] => 1
[[1,2,3,5,6,7],[4]] => [3,4] => 1
[[1,2,3,4,6,7],[5]] => [4,3] => 1
[[1,2,3,4,5,7],[6]] => [5,2] => 1
[[1,2,3,4,5,6],[7]] => [6,1] => 1
[[1,3,5,6,7],[2,4]] => [3,4] => 1
[[1,2,5,6,7],[3,4]] => [2,5] => 1
[[1,3,4,6,7],[2,5]] => [4,3] => 1
[[1,2,4,6,7],[3,5]] => [2,2,3] => 1
[[1,2,3,6,7],[4,5]] => [3,4] => 1
[[1,3,4,5,7],[2,6]] => [5,2] => 1
[[1,2,4,5,7],[3,6]] => [2,3,2] => 1
[[1,2,3,5,7],[4,6]] => [3,2,2] => 1
[[1,2,3,4,7],[5,6]] => [4,3] => 1
[[1,3,4,5,6],[2,7]] => [6,1] => 1
[[1,2,4,5,6],[3,7]] => [2,4,1] => 1
[[1,2,3,5,6],[4,7]] => [3,3,1] => 1
[[1,2,3,4,6],[5,7]] => [4,2,1] => 1
[[1,2,3,4,5],[6,7]] => [5,2] => 1
[[1,4,5,6,7],[2],[3]] => [7] => 1
[[1,3,5,6,7],[2],[4]] => [3,4] => 1
[[1,2,5,6,7],[3],[4]] => [2,5] => 1
[[1,3,4,6,7],[2],[5]] => [4,3] => 1
[[1,2,4,6,7],[3],[5]] => [2,2,3] => 1
[[1,2,3,6,7],[4],[5]] => [3,4] => 1
[[1,3,4,5,7],[2],[6]] => [5,2] => 1
[[1,2,4,5,7],[3],[6]] => [2,3,2] => 1
[[1,2,3,5,7],[4],[6]] => [3,2,2] => 1
[[1,2,3,4,7],[5],[6]] => [4,3] => 1
[[1,3,4,5,6],[2],[7]] => [6,1] => 1
[[1,2,4,5,6],[3],[7]] => [2,4,1] => 1
[[1,2,3,5,6],[4],[7]] => [3,3,1] => 1
[[1,2,3,4,6],[5],[7]] => [4,2,1] => 1
[[1,2,3,4,5],[6],[7]] => [5,2] => 1
[[1,3,5,7],[2,4,6]] => [3,2,2] => 1
[[1,2,5,7],[3,4,6]] => [2,3,2] => 1
[[1,3,4,7],[2,5,6]] => [4,3] => 1
[[1,2,4,7],[3,5,6]] => [2,2,3] => 1
[[1,2,3,7],[4,5,6]] => [3,4] => 1
[[1,3,5,6],[2,4,7]] => [3,3,1] => 1
[[1,2,5,6],[3,4,7]] => [2,4,1] => 1
[[1,3,4,6],[2,5,7]] => [4,2,1] => 1
[[1,2,4,6],[3,5,7]] => [2,2,2,1] => 1
[[1,2,3,6],[4,5,7]] => [3,3,1] => 1
[[1,3,4,5],[2,6,7]] => [5,2] => 1
[[1,2,4,5],[3,6,7]] => [2,3,2] => 1
[[1,2,3,5],[4,6,7]] => [3,2,2] => 1
[[1,2,3,4],[5,6,7]] => [4,3] => 1
[[1,4,6,7],[2,5],[3]] => [4,3] => 1
[[1,3,6,7],[2,5],[4]] => [3,4] => 1
[[1,2,6,7],[3,5],[4]] => [2,5] => 1
[[1,3,6,7],[2,4],[5]] => [3,4] => 1
[[1,2,6,7],[3,4],[5]] => [2,2,3] => 1
[[1,4,5,7],[2,6],[3]] => [5,2] => 1
[[1,3,5,7],[2,6],[4]] => [3,2,2] => 1
[[1,2,5,7],[3,6],[4]] => [2,3,2] => 1
[[1,3,4,7],[2,6],[5]] => [4,3] => 1
[[1,2,4,7],[3,6],[5]] => [2,2,3] => 1
[[1,2,3,7],[4,6],[5]] => [3,4] => 1
[[1,3,5,7],[2,4],[6]] => [3,2,2] => 1
[[1,2,5,7],[3,4],[6]] => [2,3,2] => 1
[[1,3,4,7],[2,5],[6]] => [4,3] => 1
[[1,2,4,7],[3,5],[6]] => [2,2,3] => 1
[[1,2,3,7],[4,5],[6]] => [3,2,2] => 1
[[1,4,5,6],[2,7],[3]] => [6,1] => 1
[[1,3,5,6],[2,7],[4]] => [3,3,1] => 1
[[1,2,5,6],[3,7],[4]] => [2,4,1] => 1
[[1,3,4,6],[2,7],[5]] => [4,2,1] => 1
[[1,2,4,6],[3,7],[5]] => [2,2,2,1] => 1
[[1,2,3,6],[4,7],[5]] => [3,3,1] => 1
[[1,3,4,5],[2,7],[6]] => [5,2] => 1
[[1,2,4,5],[3,7],[6]] => [2,3,2] => 1
[[1,2,3,5],[4,7],[6]] => [3,2,2] => 1
[[1,2,3,4],[5,7],[6]] => [4,3] => 1
[[1,3,5,6],[2,4],[7]] => [3,3,1] => 1
[[1,2,5,6],[3,4],[7]] => [2,4,1] => 1
[[1,3,4,6],[2,5],[7]] => [4,2,1] => 1
[[1,2,4,6],[3,5],[7]] => [2,2,2,1] => 1
[[1,2,3,6],[4,5],[7]] => [3,3,1] => 1
[[1,3,4,5],[2,6],[7]] => [5,2] => 1
[[1,2,4,5],[3,6],[7]] => [2,3,2] => 1
[[1,2,3,5],[4,6],[7]] => [3,2,2] => 1
[[1,2,3,4],[5,6],[7]] => [4,2,1] => 1
[[1,5,6,7],[2],[3],[4]] => [7] => 1
[[1,4,6,7],[2],[3],[5]] => [4,3] => 1
[[1,3,6,7],[2],[4],[5]] => [3,4] => 1
[[1,2,6,7],[3],[4],[5]] => [2,5] => 1
[[1,4,5,7],[2],[3],[6]] => [5,2] => 1
[[1,3,5,7],[2],[4],[6]] => [3,2,2] => 1
[[1,2,5,7],[3],[4],[6]] => [2,3,2] => 1
[[1,3,4,7],[2],[5],[6]] => [4,3] => 1
[[1,2,4,7],[3],[5],[6]] => [2,2,3] => 1
[[1,2,3,7],[4],[5],[6]] => [3,4] => 1
[[1,4,5,6],[2],[3],[7]] => [6,1] => 1
[[1,3,5,6],[2],[4],[7]] => [3,3,1] => 1
[[1,2,5,6],[3],[4],[7]] => [2,4,1] => 1
[[1,3,4,6],[2],[5],[7]] => [4,2,1] => 1
[[1,2,4,6],[3],[5],[7]] => [2,2,2,1] => 1
[[1,2,3,6],[4],[5],[7]] => [3,3,1] => 1
[[1,3,4,5],[2],[6],[7]] => [5,2] => 1
[[1,2,4,5],[3],[6],[7]] => [2,3,2] => 1
[[1,2,3,5],[4],[6],[7]] => [3,2,2] => 1
[[1,2,3,4],[5],[6],[7]] => [4,3] => 1
[[1,4,6],[2,5,7],[3]] => [4,2,1] => 1
[[1,3,6],[2,5,7],[4]] => [3,3,1] => 1
[[1,2,6],[3,5,7],[4]] => [2,4,1] => 1
[[1,3,6],[2,4,7],[5]] => [3,3,1] => 1
[[1,2,6],[3,4,7],[5]] => [2,2,2,1] => 1
[[1,4,5],[2,6,7],[3]] => [5,2] => 1
[[1,3,5],[2,6,7],[4]] => [3,2,2] => 1
[[1,2,5],[3,6,7],[4]] => [2,3,2] => 1
[[1,3,4],[2,6,7],[5]] => [4,3] => 1
[[1,2,4],[3,6,7],[5]] => [2,2,3] => 1
[[1,2,3],[4,6,7],[5]] => [3,4] => 1
[[1,3,5],[2,4,7],[6]] => [3,2,2] => 1
[[1,2,5],[3,4,7],[6]] => [2,3,2] => 1
[[1,3,4],[2,5,7],[6]] => [4,3] => 1
[[1,2,4],[3,5,7],[6]] => [2,2,3] => 1
[[1,2,3],[4,5,7],[6]] => [3,2,2] => 1
[[1,3,5],[2,4,6],[7]] => [3,2,2] => 1
[[1,2,5],[3,4,6],[7]] => [2,3,2] => 1
[[1,3,4],[2,5,6],[7]] => [4,2,1] => 1
[[1,2,4],[3,5,6],[7]] => [2,2,2,1] => 1
[[1,2,3],[4,5,6],[7]] => [3,3,1] => 1
[[1,4,7],[2,5],[3,6]] => [4,3] => 1
[[1,3,7],[2,5],[4,6]] => [3,2,2] => 1
[[1,2,7],[3,5],[4,6]] => [2,3,2] => 1
[[1,3,7],[2,4],[5,6]] => [3,4] => 1
[[1,2,7],[3,4],[5,6]] => [2,2,3] => 1
[[1,4,6],[2,5],[3,7]] => [4,2,1] => 1
[[1,3,6],[2,5],[4,7]] => [3,3,1] => 1
[[1,2,6],[3,5],[4,7]] => [2,4,1] => 1
[[1,3,6],[2,4],[5,7]] => [3,3,1] => 1
[[1,2,6],[3,4],[5,7]] => [2,2,2,1] => 1
[[1,4,5],[2,6],[3,7]] => [5,2] => 1
[[1,3,5],[2,6],[4,7]] => [3,2,2] => 1
[[1,2,5],[3,6],[4,7]] => [2,3,2] => 1
[[1,3,4],[2,6],[5,7]] => [4,2,1] => 1
[[1,2,4],[3,6],[5,7]] => [2,2,2,1] => 1
[[1,2,3],[4,6],[5,7]] => [3,3,1] => 1
[[1,3,5],[2,4],[6,7]] => [3,2,2] => 1
[[1,2,5],[3,4],[6,7]] => [2,3,2] => 1
[[1,3,4],[2,5],[6,7]] => [4,3] => 1
[[1,2,4],[3,5],[6,7]] => [2,2,3] => 1
[[1,2,3],[4,5],[6,7]] => [3,2,2] => 1
[[1,5,7],[2,6],[3],[4]] => [5,2] => 1
[[1,4,7],[2,6],[3],[5]] => [4,3] => 1
[[1,3,7],[2,6],[4],[5]] => [3,4] => 1
[[1,2,7],[3,6],[4],[5]] => [2,5] => 1
[[1,4,7],[2,5],[3],[6]] => [4,3] => 1
[[1,3,7],[2,5],[4],[6]] => [3,2,2] => 1
[[1,2,7],[3,5],[4],[6]] => [2,3,2] => 1
[[1,3,7],[2,4],[5],[6]] => [3,4] => 1
[[1,2,7],[3,4],[5],[6]] => [2,2,3] => 1
[[1,5,6],[2,7],[3],[4]] => [6,1] => 1
[[1,4,6],[2,7],[3],[5]] => [4,2,1] => 1
[[1,3,6],[2,7],[4],[5]] => [3,3,1] => 1
[[1,2,6],[3,7],[4],[5]] => [2,4,1] => 1
[[1,4,5],[2,7],[3],[6]] => [5,2] => 1
[[1,3,5],[2,7],[4],[6]] => [3,2,2] => 1
[[1,2,5],[3,7],[4],[6]] => [2,3,2] => 1
[[1,3,4],[2,7],[5],[6]] => [4,3] => 1
[[1,2,4],[3,7],[5],[6]] => [2,2,3] => 1
[[1,2,3],[4,7],[5],[6]] => [3,4] => 1
[[1,4,6],[2,5],[3],[7]] => [4,2,1] => 1
[[1,3,6],[2,5],[4],[7]] => [3,3,1] => 1
[[1,2,6],[3,5],[4],[7]] => [2,4,1] => 1
[[1,3,6],[2,4],[5],[7]] => [3,3,1] => 1
[[1,2,6],[3,4],[5],[7]] => [2,2,2,1] => 1
[[1,4,5],[2,6],[3],[7]] => [5,2] => 1
[[1,3,5],[2,6],[4],[7]] => [3,2,2] => 1
[[1,2,5],[3,6],[4],[7]] => [2,3,2] => 1
[[1,3,4],[2,6],[5],[7]] => [4,2,1] => 1
[[1,2,4],[3,6],[5],[7]] => [2,2,2,1] => 1
[[1,2,3],[4,6],[5],[7]] => [3,3,1] => 1
[[1,3,5],[2,4],[6],[7]] => [3,2,2] => 1
[[1,2,5],[3,4],[6],[7]] => [2,3,2] => 1
[[1,3,4],[2,5],[6],[7]] => [4,3] => 1
[[1,2,4],[3,5],[6],[7]] => [2,2,3] => 1
[[1,2,3],[4,5],[6],[7]] => [3,2,2] => 1
[[1,6,7],[2],[3],[4],[5]] => [7] => 1
[[1,5,7],[2],[3],[4],[6]] => [5,2] => 1
[[1,4,7],[2],[3],[5],[6]] => [4,3] => 1
[[1,3,7],[2],[4],[5],[6]] => [3,4] => 1
[[1,2,7],[3],[4],[5],[6]] => [2,5] => 1
[[1,5,6],[2],[3],[4],[7]] => [6,1] => 1
[[1,4,6],[2],[3],[5],[7]] => [4,2,1] => 1
[[1,3,6],[2],[4],[5],[7]] => [3,3,1] => 1
[[1,2,6],[3],[4],[5],[7]] => [2,4,1] => 1
[[1,4,5],[2],[3],[6],[7]] => [5,2] => 1
[[1,3,5],[2],[4],[6],[7]] => [3,2,2] => 1
[[1,2,5],[3],[4],[6],[7]] => [2,3,2] => 1
[[1,3,4],[2],[5],[6],[7]] => [4,3] => 1
[[1,2,4],[3],[5],[6],[7]] => [2,2,3] => 1
[[1,2,3],[4],[5],[6],[7]] => [3,4] => 1
[[1,5],[2,6],[3,7],[4]] => [5,2] => 1
[[1,4],[2,6],[3,7],[5]] => [4,2,1] => 1
[[1,3],[2,6],[4,7],[5]] => [3,3,1] => 1
[[1,2],[3,6],[4,7],[5]] => [2,4,1] => 1
[[1,4],[2,5],[3,7],[6]] => [4,3] => 1
[[1,3],[2,5],[4,7],[6]] => [3,2,2] => 1
[[1,2],[3,5],[4,7],[6]] => [2,3,2] => 1
[[1,3],[2,4],[5,7],[6]] => [3,4] => 1
[[1,2],[3,4],[5,7],[6]] => [2,2,3] => 1
[[1,4],[2,5],[3,6],[7]] => [4,3] => 1
[[1,3],[2,5],[4,6],[7]] => [3,2,2] => 1
[[1,2],[3,5],[4,6],[7]] => [2,3,2] => 1
[[1,3],[2,4],[5,6],[7]] => [3,3,1] => 1
[[1,2],[3,4],[5,6],[7]] => [2,2,2,1] => 1
[[1,6],[2,7],[3],[4],[5]] => [6,1] => 1
[[1,5],[2,7],[3],[4],[6]] => [5,2] => 1
[[1,4],[2,7],[3],[5],[6]] => [4,3] => 1
[[1,3],[2,7],[4],[5],[6]] => [3,4] => 1
[[1,2],[3,7],[4],[5],[6]] => [2,5] => 1
[[1,5],[2,6],[3],[4],[7]] => [5,2] => 1
[[1,4],[2,6],[3],[5],[7]] => [4,2,1] => 1
[[1,3],[2,6],[4],[5],[7]] => [3,3,1] => 1
[[1,2],[3,6],[4],[5],[7]] => [2,4,1] => 1
[[1,4],[2,5],[3],[6],[7]] => [4,3] => 1
[[1,3],[2,5],[4],[6],[7]] => [3,2,2] => 1
[[1,2],[3,5],[4],[6],[7]] => [2,3,2] => 1
[[1,3],[2,4],[5],[6],[7]] => [3,4] => 1
[[1,2],[3,4],[5],[6],[7]] => [2,2,3] => 1
[[1,7],[2],[3],[4],[5],[6]] => [7] => 1
[[1,6],[2],[3],[4],[5],[7]] => [6,1] => 1
[[1,5],[2],[3],[4],[6],[7]] => [5,2] => 1
[[1,4],[2],[3],[5],[6],[7]] => [4,3] => 1
[[1,3],[2],[4],[5],[6],[7]] => [3,4] => 1
[[1,2],[3],[4],[5],[6],[7]] => [2,5] => 1
[[1],[2],[3],[4],[5],[6],[7]] => [7] => 1
[[1,2,3,4,5,6,7,8]] => [8] => 1
[[1,3,4,5,6,7,8],[2]] => [8] => 1
[[1,2,4,5,6,7,8],[3]] => [2,6] => 1
[[1,2,3,5,6,7,8],[4]] => [3,5] => 1
[[1,2,3,4,6,7,8],[5]] => [4,4] => 1
[[1,2,3,4,5,7,8],[6]] => [5,3] => 1
[[1,2,3,4,5,6,8],[7]] => [6,2] => 1
[[1,2,3,4,5,6,7],[8]] => [7,1] => 1
[[1,3,5,6,7,8],[2,4]] => [3,5] => 1
[[1,2,5,6,7,8],[3,4]] => [2,6] => 1
[[1,3,4,6,7,8],[2,5]] => [4,4] => 1
[[1,2,4,6,7,8],[3,5]] => [2,2,4] => 1
[[1,2,3,6,7,8],[4,5]] => [3,5] => 1
[[1,3,4,5,7,8],[2,6]] => [5,3] => 1
[[1,2,4,5,7,8],[3,6]] => [2,3,3] => 1
[[1,2,3,5,7,8],[4,6]] => [3,2,3] => 2
[[1,2,3,4,7,8],[5,6]] => [4,4] => 1
[[1,3,4,5,6,8],[2,7]] => [6,2] => 1
[[1,2,4,5,6,8],[3,7]] => [2,4,2] => 1
[[1,2,3,5,6,8],[4,7]] => [3,3,2] => 1
[[1,2,3,4,6,8],[5,7]] => [4,2,2] => 1
[[1,2,3,4,5,8],[6,7]] => [5,3] => 1
[[1,3,4,5,6,7],[2,8]] => [7,1] => 1
[[1,2,4,5,6,7],[3,8]] => [2,5,1] => 1
[[1,2,3,5,6,7],[4,8]] => [3,4,1] => 1
[[1,2,3,4,6,7],[5,8]] => [4,3,1] => 1
[[1,2,3,4,5,7],[6,8]] => [5,2,1] => 1
[[1,2,3,4,5,6],[7,8]] => [6,2] => 1
[[1,4,5,6,7,8],[2],[3]] => [8] => 1
[[1,3,5,6,7,8],[2],[4]] => [3,5] => 1
[[1,2,5,6,7,8],[3],[4]] => [2,6] => 1
[[1,3,4,6,7,8],[2],[5]] => [4,4] => 1
[[1,2,4,6,7,8],[3],[5]] => [2,2,4] => 1
[[1,2,3,6,7,8],[4],[5]] => [3,5] => 1
[[1,3,4,5,7,8],[2],[6]] => [5,3] => 1
[[1,2,4,5,7,8],[3],[6]] => [2,3,3] => 1
[[1,2,3,5,7,8],[4],[6]] => [3,2,3] => 2
[[1,2,3,4,7,8],[5],[6]] => [4,4] => 1
[[1,3,4,5,6,8],[2],[7]] => [6,2] => 1
[[1,2,4,5,6,8],[3],[7]] => [2,4,2] => 1
[[1,2,3,5,6,8],[4],[7]] => [3,3,2] => 1
[[1,2,3,4,6,8],[5],[7]] => [4,2,2] => 1
[[1,2,3,4,5,8],[6],[7]] => [5,3] => 1
[[1,3,4,5,6,7],[2],[8]] => [7,1] => 1
[[1,2,4,5,6,7],[3],[8]] => [2,5,1] => 1
[[1,2,3,5,6,7],[4],[8]] => [3,4,1] => 1
[[1,2,3,4,6,7],[5],[8]] => [4,3,1] => 1
[[1,2,3,4,5,7],[6],[8]] => [5,2,1] => 1
[[1,2,3,4,5,6],[7],[8]] => [6,2] => 1
[[1,3,5,7,8],[2,4,6]] => [3,2,3] => 2
[[1,2,5,7,8],[3,4,6]] => [2,3,3] => 1
[[1,3,4,7,8],[2,5,6]] => [4,4] => 1
[[1,2,4,7,8],[3,5,6]] => [2,2,4] => 1
[[1,2,3,7,8],[4,5,6]] => [3,5] => 1
[[1,3,5,6,8],[2,4,7]] => [3,3,2] => 1
[[1,2,5,6,8],[3,4,7]] => [2,4,2] => 1
[[1,3,4,6,8],[2,5,7]] => [4,2,2] => 1
[[1,2,4,6,8],[3,5,7]] => [2,2,2,2] => 1
[[1,2,3,6,8],[4,5,7]] => [3,3,2] => 1
[[1,3,4,5,8],[2,6,7]] => [5,3] => 1
[[1,2,4,5,8],[3,6,7]] => [2,3,3] => 1
[[1,2,3,5,8],[4,6,7]] => [3,2,3] => 2
[[1,2,3,4,8],[5,6,7]] => [4,4] => 1
[[1,3,5,6,7],[2,4,8]] => [3,4,1] => 1
[[1,2,5,6,7],[3,4,8]] => [2,5,1] => 1
[[1,3,4,6,7],[2,5,8]] => [4,3,1] => 1
[[1,2,4,6,7],[3,5,8]] => [2,2,3,1] => 1
[[1,2,3,6,7],[4,5,8]] => [3,4,1] => 1
[[1,3,4,5,7],[2,6,8]] => [5,2,1] => 1
[[1,2,4,5,7],[3,6,8]] => [2,3,2,1] => 1
[[1,2,3,5,7],[4,6,8]] => [3,2,2,1] => 1
[[1,2,3,4,7],[5,6,8]] => [4,3,1] => 1
[[1,3,4,5,6],[2,7,8]] => [6,2] => 1
[[1,2,4,5,6],[3,7,8]] => [2,4,2] => 1
[[1,2,3,5,6],[4,7,8]] => [3,3,2] => 1
[[1,2,3,4,6],[5,7,8]] => [4,2,2] => 1
[[1,2,3,4,5],[6,7,8]] => [5,3] => 1
[[1,4,6,7,8],[2,5],[3]] => [4,4] => 1
[[1,3,6,7,8],[2,5],[4]] => [3,5] => 1
[[1,2,6,7,8],[3,5],[4]] => [2,6] => 1
[[1,3,6,7,8],[2,4],[5]] => [3,5] => 1
[[1,2,6,7,8],[3,4],[5]] => [2,2,4] => 1
[[1,4,5,7,8],[2,6],[3]] => [5,3] => 1
[[1,3,5,7,8],[2,6],[4]] => [3,2,3] => 2
[[1,2,5,7,8],[3,6],[4]] => [2,3,3] => 1
[[1,3,4,7,8],[2,6],[5]] => [4,4] => 1
[[1,2,4,7,8],[3,6],[5]] => [2,2,4] => 1
[[1,2,3,7,8],[4,6],[5]] => [3,5] => 1
[[1,3,5,7,8],[2,4],[6]] => [3,2,3] => 2
[[1,2,5,7,8],[3,4],[6]] => [2,3,3] => 1
[[1,3,4,7,8],[2,5],[6]] => [4,4] => 1
[[1,2,4,7,8],[3,5],[6]] => [2,2,4] => 1
[[1,2,3,7,8],[4,5],[6]] => [3,2,3] => 2
[[1,4,5,6,8],[2,7],[3]] => [6,2] => 1
[[1,3,5,6,8],[2,7],[4]] => [3,3,2] => 1
[[1,2,5,6,8],[3,7],[4]] => [2,4,2] => 1
[[1,3,4,6,8],[2,7],[5]] => [4,2,2] => 1
[[1,2,4,6,8],[3,7],[5]] => [2,2,2,2] => 1
[[1,2,3,6,8],[4,7],[5]] => [3,3,2] => 1
[[1,3,4,5,8],[2,7],[6]] => [5,3] => 1
[[1,2,4,5,8],[3,7],[6]] => [2,3,3] => 1
[[1,2,3,5,8],[4,7],[6]] => [3,2,3] => 2
[[1,2,3,4,8],[5,7],[6]] => [4,4] => 1
[[1,3,5,6,8],[2,4],[7]] => [3,3,2] => 1
[[1,2,5,6,8],[3,4],[7]] => [2,4,2] => 1
[[1,3,4,6,8],[2,5],[7]] => [4,2,2] => 1
[[1,2,4,6,8],[3,5],[7]] => [2,2,2,2] => 1
[[1,2,3,6,8],[4,5],[7]] => [3,3,2] => 1
[[1,3,4,5,8],[2,6],[7]] => [5,3] => 1
[[1,2,4,5,8],[3,6],[7]] => [2,3,3] => 1
[[1,2,3,5,8],[4,6],[7]] => [3,2,3] => 2
[[1,2,3,4,8],[5,6],[7]] => [4,2,2] => 1
[[1,4,5,6,7],[2,8],[3]] => [7,1] => 1
[[1,3,5,6,7],[2,8],[4]] => [3,4,1] => 1
[[1,2,5,6,7],[3,8],[4]] => [2,5,1] => 1
[[1,3,4,6,7],[2,8],[5]] => [4,3,1] => 1
[[1,2,4,6,7],[3,8],[5]] => [2,2,3,1] => 1
[[1,2,3,6,7],[4,8],[5]] => [3,4,1] => 1
[[1,3,4,5,7],[2,8],[6]] => [5,2,1] => 1
[[1,2,4,5,7],[3,8],[6]] => [2,3,2,1] => 1
[[1,2,3,5,7],[4,8],[6]] => [3,2,2,1] => 1
[[1,2,3,4,7],[5,8],[6]] => [4,3,1] => 1
[[1,3,4,5,6],[2,8],[7]] => [6,2] => 1
[[1,2,4,5,6],[3,8],[7]] => [2,4,2] => 1
[[1,2,3,5,6],[4,8],[7]] => [3,3,2] => 1
[[1,2,3,4,6],[5,8],[7]] => [4,2,2] => 1
[[1,2,3,4,5],[6,8],[7]] => [5,3] => 1
[[1,3,5,6,7],[2,4],[8]] => [3,4,1] => 1
[[1,2,5,6,7],[3,4],[8]] => [2,5,1] => 1
[[1,3,4,6,7],[2,5],[8]] => [4,3,1] => 1
[[1,2,4,6,7],[3,5],[8]] => [2,2,3,1] => 1
[[1,2,3,6,7],[4,5],[8]] => [3,4,1] => 1
[[1,3,4,5,7],[2,6],[8]] => [5,2,1] => 1
[[1,2,4,5,7],[3,6],[8]] => [2,3,2,1] => 1
[[1,2,3,5,7],[4,6],[8]] => [3,2,2,1] => 1
[[1,2,3,4,7],[5,6],[8]] => [4,3,1] => 1
[[1,3,4,5,6],[2,7],[8]] => [6,2] => 1
[[1,2,4,5,6],[3,7],[8]] => [2,4,2] => 1
[[1,2,3,5,6],[4,7],[8]] => [3,3,2] => 1
[[1,2,3,4,6],[5,7],[8]] => [4,2,2] => 1
[[1,2,3,4,5],[6,7],[8]] => [5,2,1] => 1
[[1,5,6,7,8],[2],[3],[4]] => [8] => 1
[[1,4,6,7,8],[2],[3],[5]] => [4,4] => 1
[[1,3,6,7,8],[2],[4],[5]] => [3,5] => 1
[[1,2,6,7,8],[3],[4],[5]] => [2,6] => 1
[[1,4,5,7,8],[2],[3],[6]] => [5,3] => 1
[[1,3,5,7,8],[2],[4],[6]] => [3,2,3] => 2
[[1,2,5,7,8],[3],[4],[6]] => [2,3,3] => 1
[[1,3,4,7,8],[2],[5],[6]] => [4,4] => 1
[[1,2,4,7,8],[3],[5],[6]] => [2,2,4] => 1
[[1,2,3,7,8],[4],[5],[6]] => [3,5] => 1
[[1,4,5,6,8],[2],[3],[7]] => [6,2] => 1
[[1,3,5,6,8],[2],[4],[7]] => [3,3,2] => 1
[[1,2,5,6,8],[3],[4],[7]] => [2,4,2] => 1
[[1,3,4,6,8],[2],[5],[7]] => [4,2,2] => 1
[[1,2,4,6,8],[3],[5],[7]] => [2,2,2,2] => 1
[[1,2,3,6,8],[4],[5],[7]] => [3,3,2] => 1
[[1,3,4,5,8],[2],[6],[7]] => [5,3] => 1
[[1,2,4,5,8],[3],[6],[7]] => [2,3,3] => 1
[[1,2,3,5,8],[4],[6],[7]] => [3,2,3] => 2
[[1,2,3,4,8],[5],[6],[7]] => [4,4] => 1
[[1,4,5,6,7],[2],[3],[8]] => [7,1] => 1
[[1,3,5,6,7],[2],[4],[8]] => [3,4,1] => 1
[[1,2,5,6,7],[3],[4],[8]] => [2,5,1] => 1
[[1,3,4,6,7],[2],[5],[8]] => [4,3,1] => 1
[[1,2,4,6,7],[3],[5],[8]] => [2,2,3,1] => 1
[[1,2,3,6,7],[4],[5],[8]] => [3,4,1] => 1
[[1,3,4,5,7],[2],[6],[8]] => [5,2,1] => 1
[[1,2,4,5,7],[3],[6],[8]] => [2,3,2,1] => 1
[[1,2,3,5,7],[4],[6],[8]] => [3,2,2,1] => 1
[[1,2,3,4,7],[5],[6],[8]] => [4,3,1] => 1
[[1,3,4,5,6],[2],[7],[8]] => [6,2] => 1
[[1,2,4,5,6],[3],[7],[8]] => [2,4,2] => 1
[[1,2,3,5,6],[4],[7],[8]] => [3,3,2] => 1
[[1,2,3,4,6],[5],[7],[8]] => [4,2,2] => 1
[[1,2,3,4,5],[6],[7],[8]] => [5,3] => 1
[[1,3,5,7],[2,4,6,8]] => [3,2,2,1] => 1
[[1,2,5,7],[3,4,6,8]] => [2,3,2,1] => 1
[[1,3,4,7],[2,5,6,8]] => [4,3,1] => 1
[[1,2,4,7],[3,5,6,8]] => [2,2,3,1] => 1
[[1,2,3,7],[4,5,6,8]] => [3,4,1] => 1
[[1,3,5,6],[2,4,7,8]] => [3,3,2] => 1
[[1,2,5,6],[3,4,7,8]] => [2,4,2] => 1
[[1,3,4,6],[2,5,7,8]] => [4,2,2] => 1
[[1,2,4,6],[3,5,7,8]] => [2,2,2,2] => 1
[[1,2,3,6],[4,5,7,8]] => [3,3,2] => 1
[[1,3,4,5],[2,6,7,8]] => [5,3] => 1
[[1,2,4,5],[3,6,7,8]] => [2,3,3] => 1
[[1,2,3,5],[4,6,7,8]] => [3,2,3] => 2
[[1,2,3,4],[5,6,7,8]] => [4,4] => 1
[[1,4,6,8],[2,5,7],[3]] => [4,2,2] => 1
[[1,3,6,8],[2,5,7],[4]] => [3,3,2] => 1
[[1,2,6,8],[3,5,7],[4]] => [2,4,2] => 1
[[1,3,6,8],[2,4,7],[5]] => [3,3,2] => 1
[[1,2,6,8],[3,4,7],[5]] => [2,2,2,2] => 1
[[1,4,5,8],[2,6,7],[3]] => [5,3] => 1
[[1,3,5,8],[2,6,7],[4]] => [3,2,3] => 2
[[1,2,5,8],[3,6,7],[4]] => [2,3,3] => 1
[[1,3,4,8],[2,6,7],[5]] => [4,4] => 1
[[1,2,4,8],[3,6,7],[5]] => [2,2,4] => 1
[[1,2,3,8],[4,6,7],[5]] => [3,5] => 1
[[1,3,5,8],[2,4,7],[6]] => [3,2,3] => 2
[[1,2,5,8],[3,4,7],[6]] => [2,3,3] => 1
[[1,3,4,8],[2,5,7],[6]] => [4,4] => 1
[[1,2,4,8],[3,5,7],[6]] => [2,2,4] => 1
[[1,2,3,8],[4,5,7],[6]] => [3,2,3] => 2
[[1,3,5,8],[2,4,6],[7]] => [3,2,3] => 2
[[1,2,5,8],[3,4,6],[7]] => [2,3,3] => 1
[[1,3,4,8],[2,5,6],[7]] => [4,2,2] => 1
[[1,2,4,8],[3,5,6],[7]] => [2,2,2,2] => 1
[[1,2,3,8],[4,5,6],[7]] => [3,3,2] => 1
[[1,4,6,7],[2,5,8],[3]] => [4,3,1] => 1
[[1,3,6,7],[2,5,8],[4]] => [3,4,1] => 1
[[1,2,6,7],[3,5,8],[4]] => [2,5,1] => 1
[[1,3,6,7],[2,4,8],[5]] => [3,4,1] => 1
[[1,2,6,7],[3,4,8],[5]] => [2,2,3,1] => 1
[[1,4,5,7],[2,6,8],[3]] => [5,2,1] => 1
[[1,3,5,7],[2,6,8],[4]] => [3,2,2,1] => 1
[[1,2,5,7],[3,6,8],[4]] => [2,3,2,1] => 1
[[1,3,4,7],[2,6,8],[5]] => [4,3,1] => 1
[[1,2,4,7],[3,6,8],[5]] => [2,2,3,1] => 1
[[1,2,3,7],[4,6,8],[5]] => [3,4,1] => 1
[[1,3,5,7],[2,4,8],[6]] => [3,2,2,1] => 1
[[1,2,5,7],[3,4,8],[6]] => [2,3,2,1] => 1
[[1,3,4,7],[2,5,8],[6]] => [4,3,1] => 1
[[1,2,4,7],[3,5,8],[6]] => [2,2,3,1] => 1
[[1,2,3,7],[4,5,8],[6]] => [3,2,2,1] => 1
[[1,4,5,6],[2,7,8],[3]] => [6,2] => 1
[[1,3,5,6],[2,7,8],[4]] => [3,3,2] => 1
[[1,2,5,6],[3,7,8],[4]] => [2,4,2] => 1
[[1,3,4,6],[2,7,8],[5]] => [4,2,2] => 1
[[1,2,4,6],[3,7,8],[5]] => [2,2,2,2] => 1
[[1,2,3,6],[4,7,8],[5]] => [3,3,2] => 1
[[1,3,4,5],[2,7,8],[6]] => [5,3] => 1
[[1,2,4,5],[3,7,8],[6]] => [2,3,3] => 1
[[1,2,3,5],[4,7,8],[6]] => [3,2,3] => 2
[[1,2,3,4],[5,7,8],[6]] => [4,4] => 1
[[1,3,5,6],[2,4,8],[7]] => [3,3,2] => 1
[[1,2,5,6],[3,4,8],[7]] => [2,4,2] => 1
[[1,3,4,6],[2,5,8],[7]] => [4,2,2] => 1
[[1,2,4,6],[3,5,8],[7]] => [2,2,2,2] => 1
[[1,2,3,6],[4,5,8],[7]] => [3,3,2] => 1
[[1,3,4,5],[2,6,8],[7]] => [5,3] => 1
[[1,2,4,5],[3,6,8],[7]] => [2,3,3] => 1
[[1,2,3,5],[4,6,8],[7]] => [3,2,3] => 2
[[1,2,3,4],[5,6,8],[7]] => [4,2,2] => 1
[[1,3,5,7],[2,4,6],[8]] => [3,2,2,1] => 1
[[1,2,5,7],[3,4,6],[8]] => [2,3,2,1] => 1
[[1,3,4,7],[2,5,6],[8]] => [4,3,1] => 1
[[1,2,4,7],[3,5,6],[8]] => [2,2,3,1] => 1
[[1,2,3,7],[4,5,6],[8]] => [3,4,1] => 1
[[1,3,5,6],[2,4,7],[8]] => [3,3,2] => 1
[[1,2,5,6],[3,4,7],[8]] => [2,4,2] => 1
[[1,3,4,6],[2,5,7],[8]] => [4,2,2] => 1
[[1,2,4,6],[3,5,7],[8]] => [2,2,2,2] => 1
[[1,2,3,6],[4,5,7],[8]] => [3,3,2] => 1
[[1,3,4,5],[2,6,7],[8]] => [5,2,1] => 1
[[1,2,4,5],[3,6,7],[8]] => [2,3,2,1] => 1
[[1,2,3,5],[4,6,7],[8]] => [3,2,2,1] => 1
[[1,2,3,4],[5,6,7],[8]] => [4,3,1] => 1
[[1,4,7,8],[2,5],[3,6]] => [4,4] => 1
[[1,3,7,8],[2,5],[4,6]] => [3,2,3] => 2
[[1,2,7,8],[3,5],[4,6]] => [2,3,3] => 1
[[1,3,7,8],[2,4],[5,6]] => [3,5] => 1
[[1,2,7,8],[3,4],[5,6]] => [2,2,4] => 1
[[1,4,6,8],[2,5],[3,7]] => [4,2,2] => 1
[[1,3,6,8],[2,5],[4,7]] => [3,3,2] => 1
[[1,2,6,8],[3,5],[4,7]] => [2,4,2] => 1
[[1,3,6,8],[2,4],[5,7]] => [3,3,2] => 1
[[1,2,6,8],[3,4],[5,7]] => [2,2,2,2] => 1
[[1,4,5,8],[2,6],[3,7]] => [5,3] => 1
[[1,3,5,8],[2,6],[4,7]] => [3,2,3] => 2
[[1,2,5,8],[3,6],[4,7]] => [2,3,3] => 1
[[1,3,4,8],[2,6],[5,7]] => [4,2,2] => 1
[[1,2,4,8],[3,6],[5,7]] => [2,2,2,2] => 1
[[1,2,3,8],[4,6],[5,7]] => [3,3,2] => 1
[[1,3,5,8],[2,4],[6,7]] => [3,2,3] => 2
[[1,2,5,8],[3,4],[6,7]] => [2,3,3] => 1
[[1,3,4,8],[2,5],[6,7]] => [4,4] => 1
[[1,2,4,8],[3,5],[6,7]] => [2,2,4] => 1
[[1,2,3,8],[4,5],[6,7]] => [3,2,3] => 2
[[1,4,6,7],[2,5],[3,8]] => [4,3,1] => 1
[[1,3,6,7],[2,5],[4,8]] => [3,4,1] => 1
[[1,2,6,7],[3,5],[4,8]] => [2,5,1] => 1
[[1,3,6,7],[2,4],[5,8]] => [3,4,1] => 1
[[1,2,6,7],[3,4],[5,8]] => [2,2,3,1] => 1
[[1,4,5,7],[2,6],[3,8]] => [5,2,1] => 1
[[1,3,5,7],[2,6],[4,8]] => [3,2,2,1] => 1
[[1,2,5,7],[3,6],[4,8]] => [2,3,2,1] => 1
[[1,3,4,7],[2,6],[5,8]] => [4,3,1] => 1
[[1,2,4,7],[3,6],[5,8]] => [2,2,3,1] => 1
[[1,2,3,7],[4,6],[5,8]] => [3,4,1] => 1
[[1,3,5,7],[2,4],[6,8]] => [3,2,2,1] => 1
[[1,2,5,7],[3,4],[6,8]] => [2,3,2,1] => 1
[[1,3,4,7],[2,5],[6,8]] => [4,3,1] => 1
[[1,2,4,7],[3,5],[6,8]] => [2,2,3,1] => 1
[[1,2,3,7],[4,5],[6,8]] => [3,2,2,1] => 1
[[1,4,5,6],[2,7],[3,8]] => [6,2] => 1
[[1,3,5,6],[2,7],[4,8]] => [3,3,2] => 1
[[1,2,5,6],[3,7],[4,8]] => [2,4,2] => 1
[[1,3,4,6],[2,7],[5,8]] => [4,2,2] => 1
[[1,2,4,6],[3,7],[5,8]] => [2,2,2,2] => 1
[[1,2,3,6],[4,7],[5,8]] => [3,3,2] => 1
[[1,3,4,5],[2,7],[6,8]] => [5,2,1] => 1
[[1,2,4,5],[3,7],[6,8]] => [2,3,2,1] => 1
[[1,2,3,5],[4,7],[6,8]] => [3,2,2,1] => 1
[[1,2,3,4],[5,7],[6,8]] => [4,3,1] => 1
[[1,3,5,6],[2,4],[7,8]] => [3,3,2] => 1
[[1,2,5,6],[3,4],[7,8]] => [2,4,2] => 1
[[1,3,4,6],[2,5],[7,8]] => [4,2,2] => 1
[[1,2,4,6],[3,5],[7,8]] => [2,2,2,2] => 1
[[1,2,3,6],[4,5],[7,8]] => [3,3,2] => 1
[[1,3,4,5],[2,6],[7,8]] => [5,3] => 1
[[1,2,4,5],[3,6],[7,8]] => [2,3,3] => 1
[[1,2,3,5],[4,6],[7,8]] => [3,2,3] => 2
[[1,2,3,4],[5,6],[7,8]] => [4,2,2] => 1
[[1,5,7,8],[2,6],[3],[4]] => [5,3] => 1
[[1,4,7,8],[2,6],[3],[5]] => [4,4] => 1
[[1,3,7,8],[2,6],[4],[5]] => [3,5] => 1
[[1,2,7,8],[3,6],[4],[5]] => [2,6] => 1
[[1,4,7,8],[2,5],[3],[6]] => [4,4] => 1
[[1,3,7,8],[2,5],[4],[6]] => [3,2,3] => 2
[[1,2,7,8],[3,5],[4],[6]] => [2,3,3] => 1
[[1,3,7,8],[2,4],[5],[6]] => [3,5] => 1
[[1,2,7,8],[3,4],[5],[6]] => [2,2,4] => 1
[[1,5,6,8],[2,7],[3],[4]] => [6,2] => 1
[[1,4,6,8],[2,7],[3],[5]] => [4,2,2] => 1
[[1,3,6,8],[2,7],[4],[5]] => [3,3,2] => 1
[[1,2,6,8],[3,7],[4],[5]] => [2,4,2] => 1
[[1,4,5,8],[2,7],[3],[6]] => [5,3] => 1
[[1,3,5,8],[2,7],[4],[6]] => [3,2,3] => 2
[[1,2,5,8],[3,7],[4],[6]] => [2,3,3] => 1
[[1,3,4,8],[2,7],[5],[6]] => [4,4] => 1
[[1,2,4,8],[3,7],[5],[6]] => [2,2,4] => 1
[[1,2,3,8],[4,7],[5],[6]] => [3,5] => 1
[[1,4,6,8],[2,5],[3],[7]] => [4,2,2] => 1
[[1,3,6,8],[2,5],[4],[7]] => [3,3,2] => 1
[[1,2,6,8],[3,5],[4],[7]] => [2,4,2] => 1
[[1,3,6,8],[2,4],[5],[7]] => [3,3,2] => 1
[[1,2,6,8],[3,4],[5],[7]] => [2,2,2,2] => 1
[[1,4,5,8],[2,6],[3],[7]] => [5,3] => 1
[[1,3,5,8],[2,6],[4],[7]] => [3,2,3] => 2
[[1,2,5,8],[3,6],[4],[7]] => [2,3,3] => 1
[[1,3,4,8],[2,6],[5],[7]] => [4,2,2] => 1
[[1,2,4,8],[3,6],[5],[7]] => [2,2,2,2] => 1
[[1,2,3,8],[4,6],[5],[7]] => [3,3,2] => 1
[[1,3,5,8],[2,4],[6],[7]] => [3,2,3] => 2
[[1,2,5,8],[3,4],[6],[7]] => [2,3,3] => 1
[[1,3,4,8],[2,5],[6],[7]] => [4,4] => 1
[[1,2,4,8],[3,5],[6],[7]] => [2,2,4] => 1
[[1,2,3,8],[4,5],[6],[7]] => [3,2,3] => 2
[[1,5,6,7],[2,8],[3],[4]] => [7,1] => 1
[[1,4,6,7],[2,8],[3],[5]] => [4,3,1] => 1
[[1,3,6,7],[2,8],[4],[5]] => [3,4,1] => 1
[[1,2,6,7],[3,8],[4],[5]] => [2,5,1] => 1
[[1,4,5,7],[2,8],[3],[6]] => [5,2,1] => 1
[[1,3,5,7],[2,8],[4],[6]] => [3,2,2,1] => 1
[[1,2,5,7],[3,8],[4],[6]] => [2,3,2,1] => 1
[[1,3,4,7],[2,8],[5],[6]] => [4,3,1] => 1
[[1,2,4,7],[3,8],[5],[6]] => [2,2,3,1] => 1
[[1,2,3,7],[4,8],[5],[6]] => [3,4,1] => 1
[[1,4,5,6],[2,8],[3],[7]] => [6,2] => 1
[[1,3,5,6],[2,8],[4],[7]] => [3,3,2] => 1
[[1,2,5,6],[3,8],[4],[7]] => [2,4,2] => 1
[[1,3,4,6],[2,8],[5],[7]] => [4,2,2] => 1
[[1,2,4,6],[3,8],[5],[7]] => [2,2,2,2] => 1
[[1,2,3,6],[4,8],[5],[7]] => [3,3,2] => 1
[[1,3,4,5],[2,8],[6],[7]] => [5,3] => 1
[[1,2,4,5],[3,8],[6],[7]] => [2,3,3] => 1
[[1,2,3,5],[4,8],[6],[7]] => [3,2,3] => 2
[[1,2,3,4],[5,8],[6],[7]] => [4,4] => 1
[[1,4,6,7],[2,5],[3],[8]] => [4,3,1] => 1
[[1,3,6,7],[2,5],[4],[8]] => [3,4,1] => 1
[[1,2,6,7],[3,5],[4],[8]] => [2,5,1] => 1
[[1,3,6,7],[2,4],[5],[8]] => [3,4,1] => 1
[[1,2,6,7],[3,4],[5],[8]] => [2,2,3,1] => 1
[[1,4,5,7],[2,6],[3],[8]] => [5,2,1] => 1
[[1,3,5,7],[2,6],[4],[8]] => [3,2,2,1] => 1
[[1,2,5,7],[3,6],[4],[8]] => [2,3,2,1] => 1
[[1,3,4,7],[2,6],[5],[8]] => [4,3,1] => 1
[[1,2,4,7],[3,6],[5],[8]] => [2,2,3,1] => 1
[[1,2,3,7],[4,6],[5],[8]] => [3,4,1] => 1
[[1,3,5,7],[2,4],[6],[8]] => [3,2,2,1] => 1
[[1,2,5,7],[3,4],[6],[8]] => [2,3,2,1] => 1
[[1,3,4,7],[2,5],[6],[8]] => [4,3,1] => 1
[[1,2,4,7],[3,5],[6],[8]] => [2,2,3,1] => 1
[[1,2,3,7],[4,5],[6],[8]] => [3,2,2,1] => 1
[[1,4,5,6],[2,7],[3],[8]] => [6,2] => 1
[[1,3,5,6],[2,7],[4],[8]] => [3,3,2] => 1
[[1,2,5,6],[3,7],[4],[8]] => [2,4,2] => 1
[[1,3,4,6],[2,7],[5],[8]] => [4,2,2] => 1
[[1,2,4,6],[3,7],[5],[8]] => [2,2,2,2] => 1
[[1,2,3,6],[4,7],[5],[8]] => [3,3,2] => 1
[[1,3,4,5],[2,7],[6],[8]] => [5,2,1] => 1
[[1,2,4,5],[3,7],[6],[8]] => [2,3,2,1] => 1
[[1,2,3,5],[4,7],[6],[8]] => [3,2,2,1] => 1
[[1,2,3,4],[5,7],[6],[8]] => [4,3,1] => 1
[[1,3,5,6],[2,4],[7],[8]] => [3,3,2] => 1
[[1,2,5,6],[3,4],[7],[8]] => [2,4,2] => 1
[[1,3,4,6],[2,5],[7],[8]] => [4,2,2] => 1
[[1,2,4,6],[3,5],[7],[8]] => [2,2,2,2] => 1
[[1,2,3,6],[4,5],[7],[8]] => [3,3,2] => 1
[[1,3,4,5],[2,6],[7],[8]] => [5,3] => 1
[[1,2,4,5],[3,6],[7],[8]] => [2,3,3] => 1
[[1,2,3,5],[4,6],[7],[8]] => [3,2,3] => 2
[[1,2,3,4],[5,6],[7],[8]] => [4,2,2] => 1
[[1,6,7,8],[2],[3],[4],[5]] => [8] => 1
[[1,5,7,8],[2],[3],[4],[6]] => [5,3] => 1
[[1,4,7,8],[2],[3],[5],[6]] => [4,4] => 1
[[1,3,7,8],[2],[4],[5],[6]] => [3,5] => 1
[[1,2,7,8],[3],[4],[5],[6]] => [2,6] => 1
[[1,5,6,8],[2],[3],[4],[7]] => [6,2] => 1
[[1,4,6,8],[2],[3],[5],[7]] => [4,2,2] => 1
[[1,3,6,8],[2],[4],[5],[7]] => [3,3,2] => 1
[[1,2,6,8],[3],[4],[5],[7]] => [2,4,2] => 1
[[1,4,5,8],[2],[3],[6],[7]] => [5,3] => 1
[[1,3,5,8],[2],[4],[6],[7]] => [3,2,3] => 2
[[1,2,5,8],[3],[4],[6],[7]] => [2,3,3] => 1
[[1,3,4,8],[2],[5],[6],[7]] => [4,4] => 1
[[1,2,4,8],[3],[5],[6],[7]] => [2,2,4] => 1
[[1,2,3,8],[4],[5],[6],[7]] => [3,5] => 1
[[1,5,6,7],[2],[3],[4],[8]] => [7,1] => 1
[[1,4,6,7],[2],[3],[5],[8]] => [4,3,1] => 1
[[1,3,6,7],[2],[4],[5],[8]] => [3,4,1] => 1
[[1,2,6,7],[3],[4],[5],[8]] => [2,5,1] => 1
[[1,4,5,7],[2],[3],[6],[8]] => [5,2,1] => 1
[[1,3,5,7],[2],[4],[6],[8]] => [3,2,2,1] => 1
[[1,2,5,7],[3],[4],[6],[8]] => [2,3,2,1] => 1
[[1,3,4,7],[2],[5],[6],[8]] => [4,3,1] => 1
[[1,2,4,7],[3],[5],[6],[8]] => [2,2,3,1] => 1
[[1,2,3,7],[4],[5],[6],[8]] => [3,4,1] => 1
[[1,4,5,6],[2],[3],[7],[8]] => [6,2] => 1
[[1,3,5,6],[2],[4],[7],[8]] => [3,3,2] => 1
[[1,2,5,6],[3],[4],[7],[8]] => [2,4,2] => 1
[[1,3,4,6],[2],[5],[7],[8]] => [4,2,2] => 1
[[1,2,4,6],[3],[5],[7],[8]] => [2,2,2,2] => 1
[[1,2,3,6],[4],[5],[7],[8]] => [3,3,2] => 1
[[1,3,4,5],[2],[6],[7],[8]] => [5,3] => 1
[[1,2,4,5],[3],[6],[7],[8]] => [2,3,3] => 1
[[1,2,3,5],[4],[6],[7],[8]] => [3,2,3] => 2
[[1,2,3,4],[5],[6],[7],[8]] => [4,4] => 1
[[1,4,7],[2,5,8],[3,6]] => [4,3,1] => 1
[[1,3,7],[2,5,8],[4,6]] => [3,2,2,1] => 1
[[1,2,7],[3,5,8],[4,6]] => [2,3,2,1] => 1
[[1,3,7],[2,4,8],[5,6]] => [3,4,1] => 1
[[1,2,7],[3,4,8],[5,6]] => [2,2,3,1] => 1
[[1,4,6],[2,5,8],[3,7]] => [4,2,2] => 1
[[1,3,6],[2,5,8],[4,7]] => [3,3,2] => 1
[[1,2,6],[3,5,8],[4,7]] => [2,4,2] => 1
[[1,3,6],[2,4,8],[5,7]] => [3,3,2] => 1
[[1,2,6],[3,4,8],[5,7]] => [2,2,2,2] => 1
[[1,4,5],[2,6,8],[3,7]] => [5,3] => 1
[[1,3,5],[2,6,8],[4,7]] => [3,2,3] => 2
[[1,2,5],[3,6,8],[4,7]] => [2,3,3] => 1
[[1,3,4],[2,6,8],[5,7]] => [4,2,2] => 1
[[1,2,4],[3,6,8],[5,7]] => [2,2,2,2] => 1
[[1,2,3],[4,6,8],[5,7]] => [3,3,2] => 1
[[1,3,5],[2,4,8],[6,7]] => [3,2,3] => 2
[[1,2,5],[3,4,8],[6,7]] => [2,3,3] => 1
[[1,3,4],[2,5,8],[6,7]] => [4,4] => 1
[[1,2,4],[3,5,8],[6,7]] => [2,2,4] => 1
[[1,2,3],[4,5,8],[6,7]] => [3,2,3] => 2
[[1,4,6],[2,5,7],[3,8]] => [4,2,2] => 1
[[1,3,6],[2,5,7],[4,8]] => [3,3,2] => 1
[[1,2,6],[3,5,7],[4,8]] => [2,4,2] => 1
[[1,3,6],[2,4,7],[5,8]] => [3,3,2] => 1
[[1,2,6],[3,4,7],[5,8]] => [2,2,2,2] => 1
[[1,4,5],[2,6,7],[3,8]] => [5,2,1] => 1
[[1,3,5],[2,6,7],[4,8]] => [3,2,2,1] => 1
[[1,2,5],[3,6,7],[4,8]] => [2,3,2,1] => 1
[[1,3,4],[2,6,7],[5,8]] => [4,3,1] => 1
[[1,2,4],[3,6,7],[5,8]] => [2,2,3,1] => 1
[[1,2,3],[4,6,7],[5,8]] => [3,4,1] => 1
[[1,3,5],[2,4,7],[6,8]] => [3,2,2,1] => 1
[[1,2,5],[3,4,7],[6,8]] => [2,3,2,1] => 1
[[1,3,4],[2,5,7],[6,8]] => [4,3,1] => 1
[[1,2,4],[3,5,7],[6,8]] => [2,2,3,1] => 1
[[1,2,3],[4,5,7],[6,8]] => [3,2,2,1] => 1
[[1,3,5],[2,4,6],[7,8]] => [3,2,3] => 2
[[1,2,5],[3,4,6],[7,8]] => [2,3,3] => 1
[[1,3,4],[2,5,6],[7,8]] => [4,2,2] => 1
[[1,2,4],[3,5,6],[7,8]] => [2,2,2,2] => 1
[[1,2,3],[4,5,6],[7,8]] => [3,3,2] => 1
[[1,5,7],[2,6,8],[3],[4]] => [5,2,1] => 1
[[1,4,7],[2,6,8],[3],[5]] => [4,3,1] => 1
[[1,3,7],[2,6,8],[4],[5]] => [3,4,1] => 1
[[1,2,7],[3,6,8],[4],[5]] => [2,5,1] => 1
[[1,4,7],[2,5,8],[3],[6]] => [4,3,1] => 1
[[1,3,7],[2,5,8],[4],[6]] => [3,2,2,1] => 1
[[1,2,7],[3,5,8],[4],[6]] => [2,3,2,1] => 1
[[1,3,7],[2,4,8],[5],[6]] => [3,4,1] => 1
[[1,2,7],[3,4,8],[5],[6]] => [2,2,3,1] => 1
[[1,5,6],[2,7,8],[3],[4]] => [6,2] => 1
[[1,4,6],[2,7,8],[3],[5]] => [4,2,2] => 1
[[1,3,6],[2,7,8],[4],[5]] => [3,3,2] => 1
[[1,2,6],[3,7,8],[4],[5]] => [2,4,2] => 1
[[1,4,5],[2,7,8],[3],[6]] => [5,3] => 1
[[1,3,5],[2,7,8],[4],[6]] => [3,2,3] => 2
[[1,2,5],[3,7,8],[4],[6]] => [2,3,3] => 1
[[1,3,4],[2,7,8],[5],[6]] => [4,4] => 1
[[1,2,4],[3,7,8],[5],[6]] => [2,2,4] => 1
[[1,2,3],[4,7,8],[5],[6]] => [3,5] => 1
[[1,4,6],[2,5,8],[3],[7]] => [4,2,2] => 1
[[1,3,6],[2,5,8],[4],[7]] => [3,3,2] => 1
[[1,2,6],[3,5,8],[4],[7]] => [2,4,2] => 1
[[1,3,6],[2,4,8],[5],[7]] => [3,3,2] => 1
[[1,2,6],[3,4,8],[5],[7]] => [2,2,2,2] => 1
[[1,4,5],[2,6,8],[3],[7]] => [5,3] => 1
[[1,3,5],[2,6,8],[4],[7]] => [3,2,3] => 2
[[1,2,5],[3,6,8],[4],[7]] => [2,3,3] => 1
[[1,3,4],[2,6,8],[5],[7]] => [4,2,2] => 1
[[1,2,4],[3,6,8],[5],[7]] => [2,2,2,2] => 1
[[1,2,3],[4,6,8],[5],[7]] => [3,3,2] => 1
[[1,3,5],[2,4,8],[6],[7]] => [3,2,3] => 2
[[1,2,5],[3,4,8],[6],[7]] => [2,3,3] => 1
[[1,3,4],[2,5,8],[6],[7]] => [4,4] => 1
[[1,2,4],[3,5,8],[6],[7]] => [2,2,4] => 1
[[1,2,3],[4,5,8],[6],[7]] => [3,2,3] => 2
[[1,4,6],[2,5,7],[3],[8]] => [4,2,2] => 1
[[1,3,6],[2,5,7],[4],[8]] => [3,3,2] => 1
[[1,2,6],[3,5,7],[4],[8]] => [2,4,2] => 1
[[1,3,6],[2,4,7],[5],[8]] => [3,3,2] => 1
[[1,2,6],[3,4,7],[5],[8]] => [2,2,2,2] => 1
[[1,4,5],[2,6,7],[3],[8]] => [5,2,1] => 1
[[1,3,5],[2,6,7],[4],[8]] => [3,2,2,1] => 1
[[1,2,5],[3,6,7],[4],[8]] => [2,3,2,1] => 1
[[1,3,4],[2,6,7],[5],[8]] => [4,3,1] => 1
[[1,2,4],[3,6,7],[5],[8]] => [2,2,3,1] => 1
[[1,2,3],[4,6,7],[5],[8]] => [3,4,1] => 1
[[1,3,5],[2,4,7],[6],[8]] => [3,2,2,1] => 1
[[1,2,5],[3,4,7],[6],[8]] => [2,3,2,1] => 1
[[1,3,4],[2,5,7],[6],[8]] => [4,3,1] => 1
[[1,2,4],[3,5,7],[6],[8]] => [2,2,3,1] => 1
[[1,2,3],[4,5,7],[6],[8]] => [3,2,2,1] => 1
[[1,3,5],[2,4,6],[7],[8]] => [3,2,3] => 2
[[1,2,5],[3,4,6],[7],[8]] => [2,3,3] => 1
[[1,3,4],[2,5,6],[7],[8]] => [4,2,2] => 1
[[1,2,4],[3,5,6],[7],[8]] => [2,2,2,2] => 1
[[1,2,3],[4,5,6],[7],[8]] => [3,3,2] => 1
[[1,5,8],[2,6],[3,7],[4]] => [5,3] => 1
[[1,4,8],[2,6],[3,7],[5]] => [4,2,2] => 1
[[1,3,8],[2,6],[4,7],[5]] => [3,3,2] => 1
[[1,2,8],[3,6],[4,7],[5]] => [2,4,2] => 1
[[1,4,8],[2,5],[3,7],[6]] => [4,4] => 1
[[1,3,8],[2,5],[4,7],[6]] => [3,2,3] => 2
[[1,2,8],[3,5],[4,7],[6]] => [2,3,3] => 1
[[1,3,8],[2,4],[5,7],[6]] => [3,5] => 1
[[1,2,8],[3,4],[5,7],[6]] => [2,2,4] => 1
[[1,4,8],[2,5],[3,6],[7]] => [4,4] => 1
[[1,3,8],[2,5],[4,6],[7]] => [3,2,3] => 2
[[1,2,8],[3,5],[4,6],[7]] => [2,3,3] => 1
[[1,3,8],[2,4],[5,6],[7]] => [3,3,2] => 1
[[1,2,8],[3,4],[5,6],[7]] => [2,2,2,2] => 1
[[1,5,7],[2,6],[3,8],[4]] => [5,2,1] => 1
[[1,4,7],[2,6],[3,8],[5]] => [4,3,1] => 1
[[1,3,7],[2,6],[4,8],[5]] => [3,4,1] => 1
[[1,2,7],[3,6],[4,8],[5]] => [2,5,1] => 1
[[1,4,7],[2,5],[3,8],[6]] => [4,3,1] => 1
[[1,3,7],[2,5],[4,8],[6]] => [3,2,2,1] => 1
[[1,2,7],[3,5],[4,8],[6]] => [2,3,2,1] => 1
[[1,3,7],[2,4],[5,8],[6]] => [3,4,1] => 1
[[1,2,7],[3,4],[5,8],[6]] => [2,2,3,1] => 1
[[1,5,6],[2,7],[3,8],[4]] => [6,2] => 1
[[1,4,6],[2,7],[3,8],[5]] => [4,2,2] => 1
[[1,3,6],[2,7],[4,8],[5]] => [3,3,2] => 1
[[1,2,6],[3,7],[4,8],[5]] => [2,4,2] => 1
[[1,4,5],[2,7],[3,8],[6]] => [5,2,1] => 1
[[1,3,5],[2,7],[4,8],[6]] => [3,2,2,1] => 1
[[1,2,5],[3,7],[4,8],[6]] => [2,3,2,1] => 1
[[1,3,4],[2,7],[5,8],[6]] => [4,3,1] => 1
[[1,2,4],[3,7],[5,8],[6]] => [2,2,3,1] => 1
[[1,2,3],[4,7],[5,8],[6]] => [3,4,1] => 1
[[1,4,6],[2,5],[3,8],[7]] => [4,2,2] => 1
[[1,3,6],[2,5],[4,8],[7]] => [3,3,2] => 1
[[1,2,6],[3,5],[4,8],[7]] => [2,4,2] => 1
[[1,3,6],[2,4],[5,8],[7]] => [3,3,2] => 1
[[1,2,6],[3,4],[5,8],[7]] => [2,2,2,2] => 1
[[1,4,5],[2,6],[3,8],[7]] => [5,3] => 1
[[1,3,5],[2,6],[4,8],[7]] => [3,2,3] => 2
[[1,2,5],[3,6],[4,8],[7]] => [2,3,3] => 1
[[1,3,4],[2,6],[5,8],[7]] => [4,2,2] => 1
[[1,2,4],[3,6],[5,8],[7]] => [2,2,2,2] => 1
[[1,2,3],[4,6],[5,8],[7]] => [3,3,2] => 1
[[1,3,5],[2,4],[6,8],[7]] => [3,2,3] => 2
[[1,2,5],[3,4],[6,8],[7]] => [2,3,3] => 1
[[1,3,4],[2,5],[6,8],[7]] => [4,4] => 1
[[1,2,4],[3,5],[6,8],[7]] => [2,2,4] => 1
[[1,2,3],[4,5],[6,8],[7]] => [3,2,3] => 2
[[1,4,7],[2,5],[3,6],[8]] => [4,3,1] => 1
[[1,3,7],[2,5],[4,6],[8]] => [3,2,2,1] => 1
[[1,2,7],[3,5],[4,6],[8]] => [2,3,2,1] => 1
[[1,3,7],[2,4],[5,6],[8]] => [3,4,1] => 1
[[1,2,7],[3,4],[5,6],[8]] => [2,2,3,1] => 1
[[1,4,6],[2,5],[3,7],[8]] => [4,2,2] => 1
[[1,3,6],[2,5],[4,7],[8]] => [3,3,2] => 1
[[1,2,6],[3,5],[4,7],[8]] => [2,4,2] => 1
[[1,3,6],[2,4],[5,7],[8]] => [3,3,2] => 1
[[1,2,6],[3,4],[5,7],[8]] => [2,2,2,2] => 1
[[1,4,5],[2,6],[3,7],[8]] => [5,3] => 1
[[1,3,5],[2,6],[4,7],[8]] => [3,2,3] => 2
[[1,2,5],[3,6],[4,7],[8]] => [2,3,3] => 1
[[1,3,4],[2,6],[5,7],[8]] => [4,2,2] => 1
[[1,2,4],[3,6],[5,7],[8]] => [2,2,2,2] => 1
[[1,2,3],[4,6],[5,7],[8]] => [3,3,2] => 1
[[1,3,5],[2,4],[6,7],[8]] => [3,2,2,1] => 1
[[1,2,5],[3,4],[6,7],[8]] => [2,3,2,1] => 1
[[1,3,4],[2,5],[6,7],[8]] => [4,3,1] => 1
[[1,2,4],[3,5],[6,7],[8]] => [2,2,3,1] => 1
[[1,2,3],[4,5],[6,7],[8]] => [3,2,2,1] => 1
[[1,6,8],[2,7],[3],[4],[5]] => [6,2] => 1
[[1,5,8],[2,7],[3],[4],[6]] => [5,3] => 1
[[1,4,8],[2,7],[3],[5],[6]] => [4,4] => 1
[[1,3,8],[2,7],[4],[5],[6]] => [3,5] => 1
[[1,2,8],[3,7],[4],[5],[6]] => [2,6] => 1
[[1,5,8],[2,6],[3],[4],[7]] => [5,3] => 1
[[1,4,8],[2,6],[3],[5],[7]] => [4,2,2] => 1
[[1,3,8],[2,6],[4],[5],[7]] => [3,3,2] => 1
[[1,2,8],[3,6],[4],[5],[7]] => [2,4,2] => 1
[[1,4,8],[2,5],[3],[6],[7]] => [4,4] => 1
[[1,3,8],[2,5],[4],[6],[7]] => [3,2,3] => 2
[[1,2,8],[3,5],[4],[6],[7]] => [2,3,3] => 1
[[1,3,8],[2,4],[5],[6],[7]] => [3,5] => 1
[[1,2,8],[3,4],[5],[6],[7]] => [2,2,4] => 1
[[1,6,7],[2,8],[3],[4],[5]] => [7,1] => 1
[[1,5,7],[2,8],[3],[4],[6]] => [5,2,1] => 1
[[1,4,7],[2,8],[3],[5],[6]] => [4,3,1] => 1
[[1,3,7],[2,8],[4],[5],[6]] => [3,4,1] => 1
[[1,2,7],[3,8],[4],[5],[6]] => [2,5,1] => 1
[[1,5,6],[2,8],[3],[4],[7]] => [6,2] => 1
[[1,4,6],[2,8],[3],[5],[7]] => [4,2,2] => 1
[[1,3,6],[2,8],[4],[5],[7]] => [3,3,2] => 1
[[1,2,6],[3,8],[4],[5],[7]] => [2,4,2] => 1
[[1,4,5],[2,8],[3],[6],[7]] => [5,3] => 1
[[1,3,5],[2,8],[4],[6],[7]] => [3,2,3] => 2
[[1,2,5],[3,8],[4],[6],[7]] => [2,3,3] => 1
[[1,3,4],[2,8],[5],[6],[7]] => [4,4] => 1
[[1,2,4],[3,8],[5],[6],[7]] => [2,2,4] => 1
[[1,2,3],[4,8],[5],[6],[7]] => [3,5] => 1
[[1,5,7],[2,6],[3],[4],[8]] => [5,2,1] => 1
[[1,4,7],[2,6],[3],[5],[8]] => [4,3,1] => 1
[[1,3,7],[2,6],[4],[5],[8]] => [3,4,1] => 1
[[1,2,7],[3,6],[4],[5],[8]] => [2,5,1] => 1
[[1,4,7],[2,5],[3],[6],[8]] => [4,3,1] => 1
[[1,3,7],[2,5],[4],[6],[8]] => [3,2,2,1] => 1
[[1,2,7],[3,5],[4],[6],[8]] => [2,3,2,1] => 1
[[1,3,7],[2,4],[5],[6],[8]] => [3,4,1] => 1
[[1,2,7],[3,4],[5],[6],[8]] => [2,2,3,1] => 1
[[1,5,6],[2,7],[3],[4],[8]] => [6,2] => 1
[[1,4,6],[2,7],[3],[5],[8]] => [4,2,2] => 1
[[1,3,6],[2,7],[4],[5],[8]] => [3,3,2] => 1
[[1,2,6],[3,7],[4],[5],[8]] => [2,4,2] => 1
[[1,4,5],[2,7],[3],[6],[8]] => [5,2,1] => 1
[[1,3,5],[2,7],[4],[6],[8]] => [3,2,2,1] => 1
[[1,2,5],[3,7],[4],[6],[8]] => [2,3,2,1] => 1
[[1,3,4],[2,7],[5],[6],[8]] => [4,3,1] => 1
[[1,2,4],[3,7],[5],[6],[8]] => [2,2,3,1] => 1
[[1,2,3],[4,7],[5],[6],[8]] => [3,4,1] => 1
[[1,4,6],[2,5],[3],[7],[8]] => [4,2,2] => 1
[[1,3,6],[2,5],[4],[7],[8]] => [3,3,2] => 1
[[1,2,6],[3,5],[4],[7],[8]] => [2,4,2] => 1
[[1,3,6],[2,4],[5],[7],[8]] => [3,3,2] => 1
[[1,2,6],[3,4],[5],[7],[8]] => [2,2,2,2] => 1
[[1,4,5],[2,6],[3],[7],[8]] => [5,3] => 1
[[1,3,5],[2,6],[4],[7],[8]] => [3,2,3] => 2
[[1,2,5],[3,6],[4],[7],[8]] => [2,3,3] => 1
[[1,3,4],[2,6],[5],[7],[8]] => [4,2,2] => 1
[[1,2,4],[3,6],[5],[7],[8]] => [2,2,2,2] => 1
[[1,2,3],[4,6],[5],[7],[8]] => [3,3,2] => 1
[[1,3,5],[2,4],[6],[7],[8]] => [3,2,3] => 2
[[1,2,5],[3,4],[6],[7],[8]] => [2,3,3] => 1
[[1,3,4],[2,5],[6],[7],[8]] => [4,4] => 1
[[1,2,4],[3,5],[6],[7],[8]] => [2,2,4] => 1
[[1,2,3],[4,5],[6],[7],[8]] => [3,2,3] => 2
[[1,7,8],[2],[3],[4],[5],[6]] => [8] => 1
[[1,6,8],[2],[3],[4],[5],[7]] => [6,2] => 1
[[1,5,8],[2],[3],[4],[6],[7]] => [5,3] => 1
[[1,4,8],[2],[3],[5],[6],[7]] => [4,4] => 1
[[1,3,8],[2],[4],[5],[6],[7]] => [3,5] => 1
[[1,2,8],[3],[4],[5],[6],[7]] => [2,6] => 1
[[1,6,7],[2],[3],[4],[5],[8]] => [7,1] => 1
[[1,5,7],[2],[3],[4],[6],[8]] => [5,2,1] => 1
[[1,4,7],[2],[3],[5],[6],[8]] => [4,3,1] => 1
[[1,3,7],[2],[4],[5],[6],[8]] => [3,4,1] => 1
[[1,2,7],[3],[4],[5],[6],[8]] => [2,5,1] => 1
[[1,5,6],[2],[3],[4],[7],[8]] => [6,2] => 1
[[1,4,6],[2],[3],[5],[7],[8]] => [4,2,2] => 1
[[1,3,6],[2],[4],[5],[7],[8]] => [3,3,2] => 1
[[1,2,6],[3],[4],[5],[7],[8]] => [2,4,2] => 1
[[1,4,5],[2],[3],[6],[7],[8]] => [5,3] => 1
[[1,3,5],[2],[4],[6],[7],[8]] => [3,2,3] => 2
[[1,2,5],[3],[4],[6],[7],[8]] => [2,3,3] => 1
[[1,3,4],[2],[5],[6],[7],[8]] => [4,4] => 1
[[1,2,4],[3],[5],[6],[7],[8]] => [2,2,4] => 1
[[1,2,3],[4],[5],[6],[7],[8]] => [3,5] => 1
[[1,5],[2,6],[3,7],[4,8]] => [5,3] => 1
[[1,4],[2,6],[3,7],[5,8]] => [4,2,2] => 1
[[1,3],[2,6],[4,7],[5,8]] => [3,3,2] => 1
[[1,2],[3,6],[4,7],[5,8]] => [2,4,2] => 1
[[1,4],[2,5],[3,7],[6,8]] => [4,3,1] => 1
[[1,3],[2,5],[4,7],[6,8]] => [3,2,2,1] => 1
[[1,2],[3,5],[4,7],[6,8]] => [2,3,2,1] => 1
[[1,3],[2,4],[5,7],[6,8]] => [3,4,1] => 1
[[1,2],[3,4],[5,7],[6,8]] => [2,2,3,1] => 1
[[1,4],[2,5],[3,6],[7,8]] => [4,4] => 1
[[1,3],[2,5],[4,6],[7,8]] => [3,2,3] => 2
[[1,2],[3,5],[4,6],[7,8]] => [2,3,3] => 1
[[1,3],[2,4],[5,6],[7,8]] => [3,3,2] => 1
[[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => 1
[[1,6],[2,7],[3,8],[4],[5]] => [6,2] => 1
[[1,5],[2,7],[3,8],[4],[6]] => [5,2,1] => 1
[[1,4],[2,7],[3,8],[5],[6]] => [4,3,1] => 1
[[1,3],[2,7],[4,8],[5],[6]] => [3,4,1] => 1
[[1,2],[3,7],[4,8],[5],[6]] => [2,5,1] => 1
[[1,5],[2,6],[3,8],[4],[7]] => [5,3] => 1
[[1,4],[2,6],[3,8],[5],[7]] => [4,2,2] => 1
[[1,3],[2,6],[4,8],[5],[7]] => [3,3,2] => 1
[[1,2],[3,6],[4,8],[5],[7]] => [2,4,2] => 1
[[1,4],[2,5],[3,8],[6],[7]] => [4,4] => 1
[[1,3],[2,5],[4,8],[6],[7]] => [3,2,3] => 2
[[1,2],[3,5],[4,8],[6],[7]] => [2,3,3] => 1
[[1,3],[2,4],[5,8],[6],[7]] => [3,5] => 1
[[1,2],[3,4],[5,8],[6],[7]] => [2,2,4] => 1
[[1,5],[2,6],[3,7],[4],[8]] => [5,3] => 1
[[1,4],[2,6],[3,7],[5],[8]] => [4,2,2] => 1
[[1,3],[2,6],[4,7],[5],[8]] => [3,3,2] => 1
[[1,2],[3,6],[4,7],[5],[8]] => [2,4,2] => 1
[[1,4],[2,5],[3,7],[6],[8]] => [4,3,1] => 1
[[1,3],[2,5],[4,7],[6],[8]] => [3,2,2,1] => 1
[[1,2],[3,5],[4,7],[6],[8]] => [2,3,2,1] => 1
[[1,3],[2,4],[5,7],[6],[8]] => [3,4,1] => 1
[[1,2],[3,4],[5,7],[6],[8]] => [2,2,3,1] => 1
[[1,4],[2,5],[3,6],[7],[8]] => [4,4] => 1
[[1,3],[2,5],[4,6],[7],[8]] => [3,2,3] => 2
[[1,2],[3,5],[4,6],[7],[8]] => [2,3,3] => 1
[[1,3],[2,4],[5,6],[7],[8]] => [3,3,2] => 1
[[1,2],[3,4],[5,6],[7],[8]] => [2,2,2,2] => 1
[[1,7],[2,8],[3],[4],[5],[6]] => [7,1] => 1
[[1,6],[2,8],[3],[4],[5],[7]] => [6,2] => 1
[[1,5],[2,8],[3],[4],[6],[7]] => [5,3] => 1
[[1,4],[2,8],[3],[5],[6],[7]] => [4,4] => 1
[[1,3],[2,8],[4],[5],[6],[7]] => [3,5] => 1
[[1,2],[3,8],[4],[5],[6],[7]] => [2,6] => 1
[[1,6],[2,7],[3],[4],[5],[8]] => [6,2] => 1
[[1,5],[2,7],[3],[4],[6],[8]] => [5,2,1] => 1
[[1,4],[2,7],[3],[5],[6],[8]] => [4,3,1] => 1
[[1,3],[2,7],[4],[5],[6],[8]] => [3,4,1] => 1
[[1,2],[3,7],[4],[5],[6],[8]] => [2,5,1] => 1
[[1,5],[2,6],[3],[4],[7],[8]] => [5,3] => 1
[[1,4],[2,6],[3],[5],[7],[8]] => [4,2,2] => 1
[[1,3],[2,6],[4],[5],[7],[8]] => [3,3,2] => 1
[[1,2],[3,6],[4],[5],[7],[8]] => [2,4,2] => 1
[[1,4],[2,5],[3],[6],[7],[8]] => [4,4] => 1
[[1,3],[2,5],[4],[6],[7],[8]] => [3,2,3] => 2
[[1,2],[3,5],[4],[6],[7],[8]] => [2,3,3] => 1
[[1,3],[2,4],[5],[6],[7],[8]] => [3,5] => 1
[[1,2],[3,4],[5],[6],[7],[8]] => [2,2,4] => 1
[[1,8],[2],[3],[4],[5],[6],[7]] => [8] => 1
[[1,7],[2],[3],[4],[5],[6],[8]] => [7,1] => 1
[[1,6],[2],[3],[4],[5],[7],[8]] => [6,2] => 1
[[1,5],[2],[3],[4],[6],[7],[8]] => [5,3] => 1
[[1,4],[2],[3],[5],[6],[7],[8]] => [4,4] => 1
[[1,3],[2],[4],[5],[6],[7],[8]] => [3,5] => 1
[[1,2],[3],[4],[5],[6],[7],[8]] => [2,6] => 1
[[1],[2],[3],[4],[5],[6],[7],[8]] => [8] => 1
[[1,2,3,4,5,6,7,8,9]] => [9] => 1
[[1,2,3,4,5,6,7,8],[9]] => [8,1] => 1
[[1,2,3,4,5,6,7],[8,9]] => [7,2] => 1
[[1,2,3,4,5,6,7],[8],[9]] => [7,2] => 1
[[1,2,3,4,5,6],[7,8,9]] => [6,3] => 1
[[1,2,3,4,5,6],[7,8],[9]] => [6,2,1] => 1
[[1,2,3,4,5,6],[7],[8],[9]] => [6,3] => 1
[[1,2,3,4,5],[6,7,8,9]] => [5,4] => 1
[[1,2,3,4,5],[6,7,8],[9]] => [5,3,1] => 1
[[1,2,3,4,5],[6,7],[8,9]] => [5,2,2] => 1
[[1,2,3,4,5],[6,7],[8],[9]] => [5,2,2] => 1
[[1,2,3,4,5],[6],[7],[8],[9]] => [5,4] => 1
[[1,2,3,4],[5,6,7,8],[9]] => [4,4,1] => 1
[[1,2,3,4],[5,6,7],[8,9]] => [4,3,2] => 1
[[1,2,3,4],[5,6,7],[8],[9]] => [4,3,2] => 1
[[1,2,3,4],[5,6],[7,8],[9]] => [4,2,2,1] => 1
[[1,2,3,4],[5,6],[7],[8],[9]] => [4,2,3] => 2
[[1,2,3,4],[5],[6],[7],[8],[9]] => [4,5] => 1
[[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => 1
[[1,2,3],[4,5,6],[7,8],[9]] => [3,3,2,1] => 1
[[1,2,3],[4,5,6],[7],[8],[9]] => [3,3,3] => 1
[[1,2,3],[4,5],[6,7],[8,9]] => [3,2,2,2] => 1
[[1,2,3],[4,5],[6,7],[8],[9]] => [3,2,2,2] => 1
[[1,2,3],[4,5],[6],[7],[8],[9]] => [3,2,4] => 2
[[1,2,3],[4],[5],[6],[7],[8],[9]] => [3,6] => 1
[[1,2],[3,4],[5,6],[7,8],[9]] => [2,2,2,2,1] => 1
[[1,2],[3,4],[5,6],[7],[8],[9]] => [2,2,2,3] => 1
[[1,2],[3,4],[5],[6],[7],[8],[9]] => [2,2,5] => 1
[[1,2],[3],[4],[5],[6],[7],[8],[9]] => [2,7] => 1
[[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [9] => 1
[[1,3,4,5,6,7,8,9],[2]] => [9] => 1
[[1,2,5,6,7,8,9],[3,4]] => [2,7] => 1
[[1,4,5,6,7,8,9],[2],[3]] => [9] => 1
[[1,2,3,7,8,9],[4,5,6]] => [3,6] => 1
[[1,3,6,7,8,9],[2,5],[4]] => [3,6] => 1
[[1,5,6,7,8,9],[2],[3],[4]] => [9] => 1
[[1,2,3,4,9],[5,6,7,8]] => [4,5] => 1
[[1,3,4,8,9],[2,6,7],[5]] => [4,5] => 1
[[1,2,7,8,9],[3,4],[5,6]] => [2,2,5] => 1
[[1,4,7,8,9],[2,6],[3],[5]] => [4,5] => 1
[[1,6,7,8,9],[2],[3],[4],[5]] => [9] => 1
[[1,3,4,5],[2,7,8,9],[6]] => [5,4] => 1
[[1,2,5,9],[3,4,8],[6,7]] => [2,3,4] => 1
[[1,4,5,9],[2,7,8],[3],[6]] => [5,4] => 1
[[1,3,8,9],[2,5],[4,7],[6]] => [3,2,4] => 2
[[1,5,8,9],[2,7],[3],[4],[6]] => [5,4] => 1
[[1,7,8,9],[2],[3],[4],[5],[6]] => [9] => 1
[[1,3,6],[2,5,9],[4,8],[7]] => [3,3,3] => 1
[[1,5,6],[2,8,9],[3],[4],[7]] => [6,3] => 1
[[1,2,9],[3,4],[5,6],[7,8]] => [2,2,2,3] => 1
[[1,4,9],[2,6],[3,8],[5],[7]] => [4,2,3] => 2
[[1,6,9],[2,8],[3],[4],[5],[7]] => [6,3] => 1
[[1,8,9],[2],[3],[4],[5],[6],[7]] => [9] => 1
[[1,3],[2,5],[4,7],[6,9],[8]] => [3,2,2,2] => 1
[[1,5],[2,7],[3,9],[4],[6],[8]] => [5,2,2] => 1
[[1,7],[2,9],[3],[4],[5],[6],[8]] => [7,2] => 1
[[1,9],[2],[3],[4],[5],[6],[7],[8]] => [9] => 1
[[1,4,7],[2,5,8],[3,6,9]] => [4,3,2] => 1
[[1,2,3,4,5,6,7,9],[8]] => [7,2] => 1
[[1,2,3,4,5,6,9],[7,8]] => [6,3] => 1
[[1,2,3,4,5,6,9],[7],[8]] => [6,3] => 1
[[1,2,3,4,5,9],[6,7,8]] => [5,4] => 1
[[1,2,3,4,5,9],[6,7],[8]] => [5,2,2] => 1
[[1,2,3,4,5,9],[6],[7],[8]] => [5,4] => 1
[[1,2,3,4,9],[5,6,7],[8]] => [4,3,2] => 1
[[1,2,3,4,9],[5,6],[7,8]] => [4,2,3] => 2
[[1,2,3,4,9],[5,6],[7],[8]] => [4,2,3] => 2
[[1,2,3,4,9],[5],[6],[7],[8]] => [4,5] => 1
[[1,2,3,7],[4,5,6,9],[8]] => [3,4,2] => 1
[[1,2,3,9],[4,5,6],[7,8]] => [3,3,3] => 1
[[1,2,3,9],[4,5,6],[7],[8]] => [3,3,3] => 1
[[1,2,3,9],[4,5],[6,7],[8]] => [3,2,2,2] => 1
[[1,2,3,9],[4,5],[6],[7],[8]] => [3,2,4] => 2
[[1,2,3,9],[4],[5],[6],[7],[8]] => [3,6] => 1
[[1,2,5],[3,4,8],[6,7,9]] => [2,3,3,1] => 1
[[1,2,5],[3,4,9],[6,7],[8]] => [2,3,2,2] => 1
[[1,2,5],[3,4,9],[6],[7],[8]] => [2,3,4] => 1
[[1,2,9],[3,4],[5,6],[7],[8]] => [2,2,2,3] => 1
[[1,2,9],[3,4],[5],[6],[7],[8]] => [2,2,5] => 1
[[1,2,9],[3],[4],[5],[6],[7],[8]] => [2,7] => 1
[[1,3],[2,5],[4,9],[6],[7],[8]] => [3,2,4] => 2
[[1,3],[2,9],[4],[5],[6],[7],[8]] => [3,6] => 1
[[1,2,4,5,6,7,8,9],[3]] => [2,7] => 1
[[1,3,4,6,7,8,9],[2,5]] => [4,5] => 1
[[1,3,5,6,7,8,9],[2],[4]] => [3,6] => 1
[[1,3,5,6,8,9],[2,4,7]] => [3,3,3] => 1
[[1,2,4,7,8,9],[3,5],[6]] => [2,2,5] => 1
[[1,4,6,7,8,9],[2],[3],[5]] => [4,5] => 1
[[1,3,5,7,8],[2,4,6,9]] => [3,2,3,1] => 2
[[1,2,5,7,9],[3,6,8],[4]] => [2,3,2,2] => 1
[[1,4,6,8,9],[2,5],[3,7]] => [4,2,3] => 2
[[1,3,5,8,9],[2,6],[4],[7]] => [3,2,4] => 2
[[1,5,7,8,9],[2],[3],[4],[6]] => [5,4] => 1
[[1,2,5,6],[3,7,8,9],[4]] => [2,4,3] => 1
[[1,3,4,7],[2,6,8],[5,9]] => [4,3,2] => 1
[[1,3,6,8],[2,7,9],[4],[5]] => [3,3,2,1] => 1
[[1,2,6,9],[3,4],[5,7],[8]] => [2,2,2,3] => 1
[[1,4,6,9],[2,7],[3],[5],[8]] => [4,2,3] => 2
[[1,6,8,9],[2],[3],[4],[5],[7]] => [6,3] => 1
[[1,2,4],[3,5,7],[6,8],[9]] => [2,2,3,2] => 1
[[1,4,7],[2,8,9],[3],[5],[6]] => [4,3,2] => 1
[[1,5,8],[2,6],[3,7],[4,9]] => [5,3,1] => 1
[[1,3,7],[2,5],[4,8],[6],[9]] => [3,2,2,2] => 1
[[1,5,7],[2,8],[3],[4],[6],[9]] => [5,2,2] => 1
[[1,7,9],[2],[3],[4],[5],[6],[8]] => [7,2] => 1
[[1,4],[2,6],[3,8],[5],[7],[9]] => [4,2,2,1] => 1
[[1,6],[2,8],[3],[4],[5],[7],[9]] => [6,2,1] => 1
[[1,8],[2],[3],[4],[5],[6],[7],[9]] => [8,1] => 1
[[1,3,4,5,6,7,8],[2,9]] => [8,1] => 1
[[1,3,4,5,6,7,8],[2],[9]] => [8,1] => 1
[[1,3,4,5,6,7],[2,8,9]] => [7,2] => 1
[[1,3,4,5,6,7],[2,9],[8]] => [7,2] => 1
[[1,3,4,5,6,7],[2],[8],[9]] => [7,2] => 1
[[1,3,4,5,6],[2,7,8,9]] => [6,3] => 1
[[1,3,4,5,6],[2,8,9],[7]] => [6,3] => 1
[[1,3,4,5,6],[2,8],[7,9]] => [6,2,1] => 1
[[1,3,4,5,6],[2,8],[7],[9]] => [6,2,1] => 1
[[1,3,4,5,6],[2],[7],[8],[9]] => [6,3] => 1
[[1,3,4,5],[2,7,8],[6,9]] => [5,3,1] => 1
[[1,3,4,5],[2,7,8],[6],[9]] => [5,3,1] => 1
[[1,3,4,5],[2,7],[6,9],[8]] => [5,2,2] => 1
[[1,3,4,5],[2,7],[6],[8],[9]] => [5,2,2] => 1
[[1,3,4,5],[2],[6],[7],[8],[9]] => [5,4] => 1
[[1,3,4],[2,6,7],[5,8,9]] => [4,3,2] => 1
[[1,3,4],[2,6,7],[5,9],[8]] => [4,3,2] => 1
[[1,3,4],[2,6,7],[5],[8],[9]] => [4,3,2] => 1
[[1,3,4],[2,6],[5,8],[7,9]] => [4,2,2,1] => 1
[[1,3,4],[2,6],[5,8],[7],[9]] => [4,2,2,1] => 1
[[1,3,4],[2,6],[5],[7],[8],[9]] => [4,2,3] => 2
[[1,3,4],[2],[5],[6],[7],[8],[9]] => [4,5] => 1
[[1,3],[2,5],[4,7],[6],[8],[9]] => [3,2,2,2] => 1
[[1,3],[2,5],[4],[6],[7],[8],[9]] => [3,2,4] => 2
[[1,3],[2],[4],[5],[6],[7],[8],[9]] => [3,6] => 1
[[1,2,5,6,7,8],[3,4,9]] => [2,6,1] => 1
[[1,2,5,6,7,8],[3,4],[9]] => [2,6,1] => 1
[[1,4,5,6,7,8],[2],[3],[9]] => [8,1] => 1
[[1,2,3,7,8],[4,5,6,9]] => [3,5,1] => 1
[[1,2,3,7,8],[4,5,6],[9]] => [3,5,1] => 1
[[1,3,6,7,8],[2,5],[4,9]] => [3,5,1] => 1
[[1,3,6,7,8],[2,5],[4],[9]] => [3,5,1] => 1
[[1,5,6,7,8],[2],[3],[4],[9]] => [8,1] => 1
[[1,3,4,8],[2,6,7],[5,9]] => [4,4,1] => 1
[[1,3,4,8],[2,6,7],[5],[9]] => [4,4,1] => 1
[[1,2,7,8],[3,4],[5,6],[9]] => [2,2,4,1] => 1
[[1,4,7,8],[2,6],[3],[5],[9]] => [4,4,1] => 1
[[1,6,7,8],[2],[3],[4],[5],[9]] => [8,1] => 1
[[1,2,5],[3,4,8],[6,7],[9]] => [2,3,3,1] => 1
[[1,4,5],[2,7,8],[3],[6],[9]] => [5,3,1] => 1
[[1,3,8],[2,5],[4,7],[6,9]] => [3,2,3,1] => 2
[[1,3,8],[2,5],[4,7],[6],[9]] => [3,2,3,1] => 2
[[1,5,8],[2,7],[3],[4],[6],[9]] => [5,3,1] => 1
[[1,7,8],[2],[3],[4],[5],[6],[9]] => [8,1] => 1
[[1,2,3,6,7,8,9],[4,5]] => [3,6] => 1
[[1,2,5,6,7,8,9],[3],[4]] => [2,7] => 1
[[1,2,3,4,8,9],[5,6,7]] => [4,5] => 1
[[1,2,4,7,8,9],[3,6],[5]] => [2,2,5] => 1
[[1,2,6,7,8,9],[3],[4],[5]] => [2,7] => 1
[[1,2,4,5,9],[3,7,8],[6]] => [2,3,4] => 1
[[1,2,3,8,9],[4,5],[6,7]] => [3,2,4] => 2
[[1,2,5,8,9],[3,7],[4],[6]] => [2,3,4] => 1
[[1,2,7,8,9],[3],[4],[5],[6]] => [2,7] => 1
[[1,2,5,6],[3,4,8,9],[7]] => [2,4,3] => 1
[[1,2,3,6],[4,5,9],[7,8]] => [3,3,3] => 1
[[1,2,5,6],[3,8,9],[4],[7]] => [2,4,3] => 1
[[1,2,4,9],[3,6],[5,8],[7]] => [2,2,2,3] => 1
[[1,2,6,9],[3,8],[4],[5],[7]] => [2,4,3] => 1
[[1,2,8,9],[3],[4],[5],[6],[7]] => [2,7] => 1
[[1,2,4],[3,6,7],[5,9],[8]] => [2,2,3,2] => 1
[[1,2,7],[3,6,9],[4],[5],[8]] => [2,5,2] => 1
[[1,2,5],[3,7],[4,9],[6],[8]] => [2,3,2,2] => 1
[[1,2,7],[3,9],[4],[5],[6],[8]] => [2,5,2] => 1
[[1,2],[3,6],[4,8],[5],[7],[9]] => [2,4,2,1] => 1
[[1,2],[3,8],[4],[5],[6],[7],[9]] => [2,6,1] => 1
[[1,2,3,4,7,8,9],[5,6]] => [4,5] => 1
[[1,2,4,5,8,9],[3,7],[6]] => [2,3,4] => 1
[[1,2,4,5,6,7],[3,9],[8]] => [2,5,2] => 1
[[1,2,5,6,9],[3,8],[4],[7]] => [2,4,3] => 1
[[1,2,3,4,7,8],[5,6],[9]] => [4,4,1] => 1
[[1,2,5,6,7,8],[3],[4],[9]] => [2,6,1] => 1
[[1,2,4,5],[3,7],[6,9],[8]] => [2,3,2,2] => 1
[[1,2,6,7],[3,9],[4],[5],[8]] => [2,5,2] => 1
[[1,2,5,6],[3,8],[4],[7],[9]] => [2,4,2,1] => 1
[[1,2,7,8],[3],[4],[5],[6],[9]] => [2,6,1] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
F1=q
F2=2 q
F3=4 q
F4=10 q
F5=26 q
F6=76 q
F7=232 q
F8=707 q+57 q2
Description
The number of peaks of the associated bargraph.
Interpret the composition as the sequence of heights of the bars of a bargraph. This statistic is the number of contiguous subsequences consisting of an up step, a sequence of horizontal steps, and a down step.
Interpret the composition as the sequence of heights of the bars of a bargraph. This statistic is the number of contiguous subsequences consisting of an up step, a sequence of horizontal steps, and a down step.
Map
peak composition
Description
The composition corresponding to the peak set of a standard tableau.
Let T be a standard tableau of size n.
An entry i of T is a descent if i+1 is in a lower row (in English notation), otherwise i is an ascent.
An entry 2≤i≤n−1 is a peak, if i−1 is an ascent and i is a descent.
This map returns the composition c1,…,ck of n such that {c1,c1+c2,…,c1+⋯+ck} is the peak set of T.
Let T be a standard tableau of size n.
An entry i of T is a descent if i+1 is in a lower row (in English notation), otherwise i is an ascent.
An entry 2≤i≤n−1 is a peak, if i−1 is an ascent and i is a descent.
This map returns the composition c1,…,ck of n such that {c1,c1+c2,…,c1+⋯+ck} is the peak set of T.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!