Identifier
- St000817: Integer compositions ⟶ ℤ
Values
=>
[1,1]=>1
[2]=>2
[1,1,1]=>1
[1,2]=>2
[2,1]=>4
[3]=>4
[1,1,1,1]=>1
[1,1,2]=>2
[1,2,1]=>4
[1,3]=>4
[2,1,1]=>6
[2,2]=>10
[3,1]=>12
[4]=>8
[1,1,1,1,1]=>1
[1,1,1,2]=>2
[1,1,2,1]=>4
[1,1,3]=>4
[1,2,1,1]=>6
[1,2,2]=>10
[1,3,1]=>12
[1,4]=>8
[2,1,1,1]=>8
[2,1,2]=>14
[2,2,1]=>28
[2,3]=>24
[3,1,1]=>24
[3,2]=>36
[4,1]=>32
[5]=>16
[1,1,1,1,1,1]=>1
[1,1,1,1,2]=>2
[1,1,1,2,1]=>4
[1,1,1,3]=>4
[1,1,2,1,1]=>6
[1,1,2,2]=>10
[1,1,3,1]=>12
[1,1,4]=>8
[1,2,1,1,1]=>8
[1,2,1,2]=>14
[1,2,2,1]=>28
[1,2,3]=>24
[1,3,1,1]=>24
[1,3,2]=>36
[1,4,1]=>32
[1,5]=>16
[2,1,1,1,1]=>10
[2,1,1,2]=>18
[2,1,2,1]=>36
[2,1,3]=>32
[2,2,1,1]=>54
[2,2,2]=>82
[2,3,1]=>96
[2,4]=>56
[3,1,1,1]=>40
[3,1,2]=>64
[3,2,1]=>128
[3,3]=>100
[4,1,1]=>80
[4,2]=>112
[5,1]=>80
[6]=>32
[1,1,1,1,1,1,1]=>1
[1,1,1,1,1,2]=>2
[1,1,1,1,2,1]=>4
[1,1,1,1,3]=>4
[1,1,1,2,1,1]=>6
[1,1,1,2,2]=>10
[1,1,1,3,1]=>12
[1,1,1,4]=>8
[1,1,2,1,1,1]=>8
[1,1,2,1,2]=>14
[1,1,2,2,1]=>28
[1,1,2,3]=>24
[1,1,3,1,1]=>24
[1,1,3,2]=>36
[1,1,4,1]=>32
[1,1,5]=>16
[1,2,1,1,1,1]=>10
[1,2,1,1,2]=>18
[1,2,1,2,1]=>36
[1,2,1,3]=>32
[1,2,2,1,1]=>54
[1,2,2,2]=>82
[1,2,3,1]=>96
[1,2,4]=>56
[1,3,1,1,1]=>40
[1,3,1,2]=>64
[1,3,2,1]=>128
[1,3,3]=>100
[1,4,1,1]=>80
[1,4,2]=>112
[1,5,1]=>80
[1,6]=>32
[2,1,1,1,1,1]=>12
[2,1,1,1,2]=>22
[2,1,1,2,1]=>44
[2,1,1,3]=>40
[2,1,2,1,1]=>66
[2,1,2,2]=>102
[2,1,3,1]=>120
[2,1,4]=>72
[2,2,1,1,1]=>88
[2,2,1,2]=>142
[2,2,2,1]=>284
[2,2,3]=>224
[2,3,1,1]=>240
[2,3,2]=>336
[2,4,1]=>288
[2,5]=>128
[3,1,1,1,1]=>60
[3,1,1,2]=>100
[3,1,2,1]=>200
[3,1,3]=>164
[3,2,1,1]=>300
[3,2,2]=>428
[3,3,1]=>492
[3,4]=>264
[4,1,1,1]=>160
[4,1,2]=>240
[4,2,1]=>480
[4,3]=>352
[5,1,1]=>240
[5,2]=>320
[6,1]=>192
[7]=>64
[1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,2]=>2
[1,1,1,1,1,2,1]=>4
[1,1,1,1,1,3]=>4
[1,1,1,1,2,1,1]=>6
[1,1,1,1,2,2]=>10
[1,1,1,1,3,1]=>12
[1,1,1,1,4]=>8
[1,1,1,2,1,1,1]=>8
[1,1,1,2,1,2]=>14
[1,1,1,2,2,1]=>28
[1,1,1,2,3]=>24
[1,1,1,3,1,1]=>24
[1,1,1,3,2]=>36
[1,1,1,4,1]=>32
[1,1,1,5]=>16
[1,1,2,1,1,1,1]=>10
[1,1,2,1,1,2]=>18
[1,1,2,1,2,1]=>36
[1,1,2,1,3]=>32
[1,1,2,2,1,1]=>54
[1,1,2,2,2]=>82
[1,1,2,3,1]=>96
[1,1,2,4]=>56
[1,1,3,1,1,1]=>40
[1,1,3,1,2]=>64
[1,1,3,2,1]=>128
[1,1,3,3]=>100
[1,1,4,1,1]=>80
[1,1,4,2]=>112
[1,1,5,1]=>80
[1,1,6]=>32
[1,2,1,1,1,1,1]=>12
[1,2,1,1,1,2]=>22
[1,2,1,1,2,1]=>44
[1,2,1,1,3]=>40
[1,2,1,2,1,1]=>66
[1,2,1,2,2]=>102
[1,2,1,3,1]=>120
[1,2,1,4]=>72
[1,2,2,1,1,1]=>88
[1,2,2,1,2]=>142
[1,2,2,2,1]=>284
[1,2,2,3]=>224
[1,2,3,1,1]=>240
[1,2,3,2]=>336
[1,2,4,1]=>288
[1,2,5]=>128
[1,3,1,1,1,1]=>60
[1,3,1,1,2]=>100
[1,3,1,2,1]=>200
[1,3,1,3]=>164
[1,3,2,1,1]=>300
[1,3,2,2]=>428
[1,3,3,1]=>492
[1,3,4]=>264
[1,4,1,1,1]=>160
[1,4,1,2]=>240
[1,4,2,1]=>480
[1,4,3]=>352
[1,5,1,1]=>240
[1,5,2]=>320
[1,6,1]=>192
[1,7]=>64
[2,1,1,1,1,1,1]=>14
[2,1,1,1,1,2]=>26
[2,1,1,1,2,1]=>52
[2,1,1,1,3]=>48
[2,1,1,2,1,1]=>78
[2,1,1,2,2]=>122
[2,1,1,3,1]=>144
[2,1,1,4]=>88
[2,1,2,1,1,1]=>104
[2,1,2,1,2]=>170
[2,1,2,2,1]=>340
[2,1,2,3]=>272
[2,1,3,1,1]=>288
[2,1,3,2]=>408
[2,1,4,1]=>352
[2,1,5]=>160
[2,2,1,1,1,1]=>130
[2,2,1,1,2]=>218
[2,2,1,2,1]=>436
[2,2,1,3]=>360
[2,2,2,1,1]=>654
[2,2,2,2]=>938
[2,2,3,1]=>1080
[2,2,4]=>584
[2,3,1,1,1]=>480
[2,3,1,2]=>720
[2,3,2,1]=>1440
[2,3,3]=>1056
[2,4,1,1]=>880
[2,4,2]=>1168
[2,5,1]=>800
[2,6]=>288
[3,1,1,1,1,1]=>84
[3,1,1,1,2]=>144
[3,1,1,2,1]=>288
[3,1,1,3]=>244
[3,1,2,1,1]=>432
[3,1,2,2]=>632
[3,1,3,1]=>732
[3,1,4]=>408
[3,2,1,1,1]=>576
[3,2,1,2]=>876
[3,2,2,1]=>1752
[3,2,3]=>1304
[3,3,1,1]=>1464
[3,3,2]=>1956
[3,4,1]=>1632
[3,5]=>672
[4,1,1,1,1]=>280
[4,1,1,2]=>440
[4,1,2,1]=>880
[4,1,3]=>680
[4,2,1,1]=>1320
[4,2,2]=>1800
[4,3,1]=>2040
[4,4]=>1032
[5,1,1,1]=>560
[5,1,2]=>800
[5,2,1]=>1600
[5,3]=>1120
[6,1,1]=>672
[6,2]=>864
[7,1]=>448
[8]=>128
[1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,2]=>2
[1,1,1,1,1,1,2,1]=>4
[1,1,1,1,1,1,3]=>4
[1,1,1,1,1,2,1,1]=>6
[1,1,1,1,1,2,2]=>10
[1,1,1,1,1,3,1]=>12
[1,1,1,1,1,4]=>8
[1,1,1,1,2,1,1,1]=>8
[1,1,1,1,2,1,2]=>14
[1,1,1,1,2,2,1]=>28
[1,1,1,1,2,3]=>24
[1,1,1,1,3,1,1]=>24
[1,1,1,1,3,2]=>36
[1,1,1,1,4,1]=>32
[1,1,1,1,5]=>16
[1,1,1,2,1,1,1,1]=>10
[1,1,1,2,1,1,2]=>18
[1,1,1,2,1,2,1]=>36
[1,1,1,2,1,3]=>32
[1,1,1,2,2,1,1]=>54
[1,1,1,2,2,2]=>82
[1,1,1,2,3,1]=>96
[1,1,1,2,4]=>56
[1,1,1,3,1,1,1]=>40
[1,1,1,3,1,2]=>64
[1,1,1,3,2,1]=>128
[1,1,1,3,3]=>100
[1,1,1,4,1,1]=>80
[1,1,1,4,2]=>112
[1,1,1,5,1]=>80
[1,1,1,6]=>32
[1,1,2,1,1,1,1,1]=>12
[1,1,2,1,1,1,2]=>22
[1,1,2,1,1,2,1]=>44
[1,1,2,1,1,3]=>40
[1,1,2,1,2,1,1]=>66
[1,1,2,1,2,2]=>102
[1,1,2,1,3,1]=>120
[1,1,2,1,4]=>72
[1,1,2,2,1,1,1]=>88
[1,1,2,2,1,2]=>142
[1,1,2,2,2,1]=>284
[1,1,2,2,3]=>224
[1,1,2,3,1,1]=>240
[1,1,2,3,2]=>336
[1,1,2,4,1]=>288
[1,1,2,5]=>128
[1,1,3,1,1,1,1]=>60
[1,1,3,1,1,2]=>100
[1,1,3,1,2,1]=>200
[1,1,3,1,3]=>164
[1,1,3,2,1,1]=>300
[1,1,3,2,2]=>428
[1,1,3,3,1]=>492
[1,1,3,4]=>264
[1,1,4,1,1,1]=>160
[1,1,4,1,2]=>240
[1,1,4,2,1]=>480
[1,1,4,3]=>352
[1,1,5,1,1]=>240
[1,1,5,2]=>320
[1,1,6,1]=>192
[1,1,7]=>64
[1,2,1,1,1,1,1,1]=>14
[1,2,1,1,1,1,2]=>26
[1,2,1,1,1,2,1]=>52
[1,2,1,1,1,3]=>48
[1,2,1,1,2,1,1]=>78
[1,2,1,1,2,2]=>122
[1,2,1,1,3,1]=>144
[1,2,1,1,4]=>88
[1,2,1,2,1,1,1]=>104
[1,2,1,2,1,2]=>170
[1,2,1,2,2,1]=>340
[1,2,1,2,3]=>272
[1,2,1,3,1,1]=>288
[1,2,1,3,2]=>408
[1,2,1,4,1]=>352
[1,2,1,5]=>160
[1,2,2,1,1,1,1]=>130
[1,2,2,1,1,2]=>218
[1,2,2,1,2,1]=>436
[1,2,2,1,3]=>360
[1,2,2,2,1,1]=>654
[1,2,2,2,2]=>938
[1,2,2,3,1]=>1080
[1,2,2,4]=>584
[1,2,3,1,1,1]=>480
[1,2,3,1,2]=>720
[1,2,3,2,1]=>1440
[1,2,3,3]=>1056
[1,2,4,1,1]=>880
[1,2,4,2]=>1168
[1,2,5,1]=>800
[1,2,6]=>288
[1,3,1,1,1,1,1]=>84
[1,3,1,1,1,2]=>144
[1,3,1,1,2,1]=>288
[1,3,1,1,3]=>244
[1,3,1,2,1,1]=>432
[1,3,1,2,2]=>632
[1,3,1,3,1]=>732
[1,3,1,4]=>408
[1,3,2,1,1,1]=>576
[1,3,2,1,2]=>876
[1,3,2,2,1]=>1752
[1,3,2,3]=>1304
[1,3,3,1,1]=>1464
[1,3,3,2]=>1956
[1,3,4,1]=>1632
[1,3,5]=>672
[1,4,1,1,1,1]=>280
[1,4,1,1,2]=>440
[1,4,1,2,1]=>880
[1,4,1,3]=>680
[1,4,2,1,1]=>1320
[1,4,2,2]=>1800
[1,4,3,1]=>2040
[1,4,4]=>1032
[1,5,1,1,1]=>560
[1,5,1,2]=>800
[1,5,2,1]=>1600
[1,5,3]=>1120
[1,6,1,1]=>672
[1,6,2]=>864
[1,7,1]=>448
[1,8]=>128
[2,1,1,1,1,1,1,1]=>16
[2,1,1,1,1,1,2]=>30
[2,1,1,1,1,2,1]=>60
[2,1,1,1,1,3]=>56
[2,1,1,1,2,1,1]=>90
[2,1,1,1,2,2]=>142
[2,1,1,1,3,1]=>168
[2,1,1,1,4]=>104
[2,1,1,2,1,1,1]=>120
[2,1,1,2,1,2]=>198
[2,1,1,2,2,1]=>396
[2,1,1,2,3]=>320
[2,1,1,3,1,1]=>336
[2,1,1,3,2]=>480
[2,1,1,4,1]=>416
[2,1,1,5]=>192
[2,1,2,1,1,1,1]=>150
[2,1,2,1,1,2]=>254
[2,1,2,1,2,1]=>508
[2,1,2,1,3]=>424
[2,1,2,2,1,1]=>762
[2,1,2,2,2]=>1102
[2,1,2,3,1]=>1272
[2,1,2,4]=>696
[2,1,3,1,1,1]=>560
[2,1,3,1,2]=>848
[2,1,3,2,1]=>1696
[2,1,3,3]=>1256
[2,1,4,1,1]=>1040
[2,1,4,2]=>1392
[2,1,5,1]=>960
[2,1,6]=>352
[2,2,1,1,1,1,1]=>180
[2,2,1,1,1,2]=>310
[2,2,1,1,2,1]=>620
[2,2,1,1,3]=>528
[2,2,1,2,1,1]=>930
[2,2,1,2,2]=>1366
[2,2,1,3,1]=>1584
[2,2,1,4]=>888
[2,2,2,1,1,1]=>1240
[2,2,2,1,2]=>1894
[2,2,2,2,1]=>3788
[2,2,2,3]=>2832
[2,2,3,1,1]=>3168
[2,2,3,2]=>4248
[2,2,4,1]=>3552
[2,2,5]=>1472
[2,3,1,1,1,1]=>840
[2,3,1,1,2]=>1320
[2,3,1,2,1]=>2640
[2,3,1,3]=>2040
[2,3,2,1,1]=>3960
[2,3,2,2]=>5400
[2,3,3,1]=>6120
[2,3,4]=>3096
[2,4,1,1,1]=>2080
[2,4,1,2]=>2960
[2,4,2,1]=>5920
[2,4,3]=>4128
[2,5,1,1]=>2880
[2,5,2]=>3680
[2,6,1]=>2112
[2,7]=>640
[3,1,1,1,1,1,1]=>112
[3,1,1,1,1,2]=>196
[3,1,1,1,2,1]=>392
[3,1,1,1,3]=>340
[3,1,1,2,1,1]=>588
[3,1,1,2,2]=>876
[3,1,1,3,1]=>1020
[3,1,1,4]=>584
[3,1,2,1,1,1]=>784
[3,1,2,1,2]=>1216
[3,1,2,2,1]=>2432
[3,1,2,3]=>1848
[3,1,3,1,1]=>2040
[3,1,3,2]=>2772
[3,1,4,1]=>2336
[3,1,5]=>992
[3,2,1,1,1,1]=>980
[3,2,1,1,2]=>1556
[3,2,1,2,1]=>3112
[3,2,1,3]=>2432
[3,2,2,1,1]=>4668
[3,2,2,2]=>6420
[3,2,3,1]=>7296
[3,2,4]=>3736
[3,3,1,1,1]=>3400
[3,3,1,2]=>4864
[3,3,2,1]=>9728
[3,3,3]=>6820
[3,4,1,1]=>5840
[3,4,2]=>7472
[3,5,1]=>4960
[3,6]=>1664
[4,1,1,1,1,1]=>448
[4,1,1,1,2]=>728
[4,1,1,2,1]=>1456
[4,1,1,3]=>1168
[4,1,2,1,1]=>2184
[4,1,2,2]=>3064
[4,1,3,1]=>3504
[4,1,4]=>1848
[4,2,1,1,1]=>2912
[4,2,1,2]=>4232
[4,2,2,1]=>8464
[4,2,3]=>6032
[4,3,1,1]=>7008
[4,3,2]=>9048
[4,4,1]=>7392
[4,5]=>2880
[5,1,1,1,1]=>1120
[5,1,1,2]=>1680
[5,1,2,1]=>3360
[5,1,3]=>2480
[5,2,1,1]=>5040
[5,2,2]=>6640
[5,3,1]=>7440
[5,4]=>3600
[6,1,1,1]=>1792
[6,1,2]=>2464
[6,2,1]=>4928
[6,3]=>3328
[7,1,1]=>1792
[7,2]=>2240
[8,1]=>1024
[9]=>256
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions.
For example, $dI_{121} = 2M_{1111} + M_{112} + M_{121}$, so the statistic on the composition $121$ is 4.
For example, $dI_{121} = 2M_{1111} + M_{112} + M_{121}$, so the statistic on the composition $121$ is 4.
Code
def statistic(mu): M = QuasiSymmetricFunctions(ZZ).M() dI = QuasiSymmetricFunctions(ZZ).dI() return sum(coeff for _, coeff in M(dI(mu)))
Created
May 20, 2017 at 22:06 by Martin Rubey
Updated
May 20, 2017 at 22:06 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!