Identifier
- St000818: Integer compositions ⟶ ℤ
Values
=>
[1,1]=>1
[2]=>2
[1,1,1]=>1
[1,2]=>2
[2,1]=>2
[3]=>4
[1,1,1,1]=>1
[1,1,2]=>2
[1,2,1]=>2
[1,3]=>8
[2,1,1]=>2
[2,2]=>6
[3,1]=>4
[4]=>8
[1,1,1,1,1]=>1
[1,1,1,2]=>2
[1,1,2,1]=>2
[1,1,3]=>12
[1,2,1,1]=>2
[1,2,2]=>6
[1,3,1]=>8
[1,4]=>24
[2,1,1,1]=>2
[2,1,2]=>4
[2,2,1]=>6
[2,3]=>12
[3,1,1]=>4
[3,2]=>16
[4,1]=>8
[5]=>16
[1,1,1,1,1,1]=>1
[1,1,1,1,2]=>2
[1,1,1,2,1]=>2
[1,1,1,3]=>16
[1,1,2,1,1]=>2
[1,1,2,2]=>6
[1,1,3,1]=>12
[1,1,4]=>48
[1,2,1,1,1]=>2
[1,2,1,2]=>4
[1,2,2,1]=>6
[1,2,3]=>12
[1,3,1,1]=>8
[1,3,2]=>28
[1,4,1]=>24
[1,5]=>64
[2,1,1,1,1]=>2
[2,1,1,2]=>4
[2,1,2,1]=>4
[2,1,3]=>20
[2,2,1,1]=>6
[2,2,2]=>22
[2,3,1]=>12
[2,4]=>56
[3,1,1,1]=>4
[3,1,2]=>8
[3,2,1]=>16
[3,3]=>44
[4,1,1]=>8
[4,2]=>40
[5,1]=>16
[6]=>32
[1,1,1,1,1,1,1]=>1
[1,1,1,1,1,2]=>2
[1,1,1,1,2,1]=>2
[1,1,1,1,3]=>20
[1,1,1,2,1,1]=>2
[1,1,1,2,2]=>6
[1,1,1,3,1]=>16
[1,1,1,4]=>80
[1,1,2,1,1,1]=>2
[1,1,2,1,2]=>4
[1,1,2,2,1]=>6
[1,1,2,3]=>12
[1,1,3,1,1]=>12
[1,1,3,2]=>40
[1,1,4,1]=>48
[1,1,5]=>160
[1,2,1,1,1,1]=>2
[1,2,1,1,2]=>4
[1,2,1,2,1]=>4
[1,2,1,3]=>20
[1,2,2,1,1]=>6
[1,2,2,2]=>22
[1,2,3,1]=>12
[1,2,4]=>80
[1,3,1,1,1]=>8
[1,3,1,2]=>16
[1,3,2,1]=>28
[1,3,3]=>112
[1,4,1,1]=>24
[1,4,2]=>96
[1,5,1]=>64
[1,6]=>160
[2,1,1,1,1,1]=>2
[2,1,1,1,2]=>4
[2,1,1,2,1]=>4
[2,1,1,3]=>28
[2,1,2,1,1]=>4
[2,1,2,2]=>12
[2,1,3,1]=>20
[2,1,4]=>112
[2,2,1,1,1]=>6
[2,2,1,2]=>12
[2,2,2,1]=>22
[2,2,3]=>44
[2,3,1,1]=>12
[2,3,2]=>56
[2,4,1]=>56
[2,5]=>192
[3,1,1,1,1]=>4
[3,1,1,2]=>8
[3,1,2,1]=>8
[3,1,3]=>48
[3,2,1,1]=>16
[3,2,2]=>68
[3,3,1]=>44
[3,4]=>88
[4,1,1,1]=>8
[4,1,2]=>16
[4,2,1]=>40
[4,3]=>136
[5,1,1]=>16
[5,2]=>96
[6,1]=>32
[7]=>64
[1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,2]=>2
[1,1,1,1,1,2,1]=>2
[1,1,1,1,1,3]=>24
[1,1,1,1,2,1,1]=>2
[1,1,1,1,2,2]=>6
[1,1,1,1,3,1]=>20
[1,1,1,1,4]=>120
[1,1,1,2,1,1,1]=>2
[1,1,1,2,1,2]=>4
[1,1,1,2,2,1]=>6
[1,1,1,2,3]=>12
[1,1,1,3,1,1]=>16
[1,1,1,3,2]=>52
[1,1,1,4,1]=>80
[1,1,1,5]=>320
[1,1,2,1,1,1,1]=>2
[1,1,2,1,1,2]=>4
[1,1,2,1,2,1]=>4
[1,1,2,1,3]=>20
[1,1,2,2,1,1]=>6
[1,1,2,2,2]=>22
[1,1,2,3,1]=>12
[1,1,2,4]=>104
[1,1,3,1,1,1]=>12
[1,1,3,1,2]=>24
[1,1,3,2,1]=>40
[1,1,3,3]=>204
[1,1,4,1,1]=>48
[1,1,4,2]=>176
[1,1,5,1]=>160
[1,1,6]=>480
[1,2,1,1,1,1,1]=>2
[1,2,1,1,1,2]=>4
[1,2,1,1,2,1]=>4
[1,2,1,1,3]=>28
[1,2,1,2,1,1]=>4
[1,2,1,2,2]=>12
[1,2,1,3,1]=>20
[1,2,1,4]=>152
[1,2,2,1,1,1]=>6
[1,2,2,1,2]=>12
[1,2,2,2,1]=>22
[1,2,2,3]=>44
[1,2,3,1,1]=>12
[1,2,3,2]=>56
[1,2,4,1]=>80
[1,2,5]=>352
[1,3,1,1,1,1]=>8
[1,3,1,1,2]=>16
[1,3,1,2,1]=>16
[1,3,1,3]=>112
[1,3,2,1,1]=>28
[1,3,2,2]=>112
[1,3,3,1]=>112
[1,3,4]=>224
[1,4,1,1,1]=>24
[1,4,1,2]=>48
[1,4,2,1]=>96
[1,4,3]=>496
[1,5,1,1]=>64
[1,5,2]=>288
[1,6,1]=>160
[1,7]=>384
[2,1,1,1,1,1,1]=>2
[2,1,1,1,1,2]=>4
[2,1,1,1,2,1]=>4
[2,1,1,1,3]=>36
[2,1,1,2,1,1]=>4
[2,1,1,2,2]=>12
[2,1,1,3,1]=>28
[2,1,1,4]=>184
[2,1,2,1,1,1]=>4
[2,1,2,1,2]=>8
[2,1,2,2,1]=>12
[2,1,2,3]=>24
[2,1,3,1,1]=>20
[2,1,3,2]=>68
[2,1,4,1]=>112
[2,1,5]=>448
[2,2,1,1,1,1]=>6
[2,2,1,1,2]=>12
[2,2,1,2,1]=>12
[2,2,1,3]=>68
[2,2,2,1,1]=>22
[2,2,2,2]=>90
[2,2,3,1]=>44
[2,2,4]=>336
[2,3,1,1,1]=>12
[2,3,1,2]=>24
[2,3,2,1]=>56
[2,3,3]=>156
[2,4,1,1]=>56
[2,4,2]=>304
[2,5,1]=>192
[2,6]=>576
[3,1,1,1,1,1]=>4
[3,1,1,1,2]=>8
[3,1,1,2,1]=>8
[3,1,1,3]=>64
[3,1,2,1,1]=>8
[3,1,2,2]=>24
[3,1,3,1]=>48
[3,1,4]=>184
[3,2,1,1,1]=>16
[3,2,1,2]=>32
[3,2,2,1]=>68
[3,2,3]=>136
[3,3,1,1]=>44
[3,3,2]=>248
[3,4,1]=>88
[3,5]=>448
[4,1,1,1,1]=>8
[4,1,1,2]=>16
[4,1,2,1]=>16
[4,1,3]=>112
[4,2,1,1]=>40
[4,2,2]=>192
[4,3,1]=>136
[4,4]=>360
[5,1,1,1]=>16
[5,1,2]=>32
[5,2,1]=>96
[5,3]=>384
[6,1,1]=>32
[6,2]=>224
[7,1]=>64
[8]=>128
[1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,2]=>2
[1,1,1,1,1,1,2,1]=>2
[1,1,1,1,1,1,3]=>28
[1,1,1,1,1,2,1,1]=>2
[1,1,1,1,1,2,2]=>6
[1,1,1,1,1,3,1]=>24
[1,1,1,1,1,4]=>168
[1,1,1,1,2,1,1,1]=>2
[1,1,1,1,2,1,2]=>4
[1,1,1,1,2,2,1]=>6
[1,1,1,1,2,3]=>12
[1,1,1,1,3,1,1]=>20
[1,1,1,1,3,2]=>64
[1,1,1,1,4,1]=>120
[1,1,1,1,5]=>560
[1,1,1,2,1,1,1,1]=>2
[1,1,1,2,1,1,2]=>4
[1,1,1,2,1,2,1]=>4
[1,1,1,2,1,3]=>20
[1,1,1,2,2,1,1]=>6
[1,1,1,2,2,2]=>22
[1,1,1,2,3,1]=>12
[1,1,1,2,4]=>128
[1,1,1,3,1,1,1]=>16
[1,1,1,3,1,2]=>32
[1,1,1,3,2,1]=>52
[1,1,1,3,3]=>320
[1,1,1,4,1,1]=>80
[1,1,1,4,2]=>280
[1,1,1,5,1]=>320
[1,1,1,6]=>1120
[1,1,2,1,1,1,1,1]=>2
[1,1,2,1,1,1,2]=>4
[1,1,2,1,1,2,1]=>4
[1,1,2,1,1,3]=>28
[1,1,2,1,2,1,1]=>4
[1,1,2,1,2,2]=>12
[1,1,2,1,3,1]=>20
[1,1,2,1,4]=>192
[1,1,2,2,1,1,1]=>6
[1,1,2,2,1,2]=>12
[1,1,2,2,2,1]=>22
[1,1,2,2,3]=>44
[1,1,2,3,1,1]=>12
[1,1,2,3,2]=>56
[1,1,2,4,1]=>104
[1,1,2,5]=>560
[1,1,3,1,1,1,1]=>12
[1,1,3,1,1,2]=>24
[1,1,3,1,2,1]=>24
[1,1,3,1,3]=>192
[1,1,3,2,1,1]=>40
[1,1,3,2,2]=>156
[1,1,3,3,1]=>204
[1,1,3,4]=>408
[1,1,4,1,1,1]=>48
[1,1,4,1,2]=>96
[1,1,4,2,1]=>176
[1,1,4,3]=>1176
[1,1,5,1,1]=>160
[1,1,5,2]=>640
[1,1,6,1]=>480
[1,1,7]=>1344
[1,2,1,1,1,1,1,1]=>2
[1,2,1,1,1,1,2]=>4
[1,2,1,1,1,2,1]=>4
[1,2,1,1,1,3]=>36
[1,2,1,1,2,1,1]=>4
[1,2,1,1,2,2]=>12
[1,2,1,1,3,1]=>28
[1,2,1,1,4]=>240
[1,2,1,2,1,1,1]=>4
[1,2,1,2,1,2]=>8
[1,2,1,2,2,1]=>12
[1,2,1,2,3]=>24
[1,2,1,3,1,1]=>20
[1,2,1,3,2]=>68
[1,2,1,4,1]=>152
[1,2,1,5]=>752
[1,2,2,1,1,1,1]=>6
[1,2,2,1,1,2]=>12
[1,2,2,1,2,1]=>12
[1,2,2,1,3]=>68
[1,2,2,2,1,1]=>22
[1,2,2,2,2]=>90
[1,2,2,3,1]=>44
[1,2,2,4]=>424
[1,2,3,1,1,1]=>12
[1,2,3,1,2]=>24
[1,2,3,2,1]=>56
[1,2,3,3]=>156
[1,2,4,1,1]=>80
[1,2,4,2]=>416
[1,2,5,1]=>352
[1,2,6]=>1280
[1,3,1,1,1,1,1]=>8
[1,3,1,1,1,2]=>16
[1,3,1,1,2,1]=>16
[1,3,1,1,3]=>144
[1,3,1,2,1,1]=>16
[1,3,1,2,2]=>48
[1,3,1,3,1]=>112
[1,3,1,4]=>448
[1,3,2,1,1,1]=>28
[1,3,2,1,2]=>56
[1,3,2,2,1]=>112
[1,3,2,3]=>224
[1,3,3,1,1]=>112
[1,3,3,2]=>540
[1,3,4,1]=>224
[1,3,5]=>1440
[1,4,1,1,1,1]=>24
[1,4,1,1,2]=>48
[1,4,1,2,1]=>48
[1,4,1,3]=>400
[1,4,2,1,1]=>96
[1,4,2,2]=>416
[1,4,3,1]=>496
[1,4,4]=>1576
[1,5,1,1,1]=>64
[1,5,1,2]=>128
[1,5,2,1]=>288
[1,5,3]=>1760
[1,6,1,1]=>160
[1,6,2]=>800
[1,7,1]=>384
[1,8]=>896
[2,1,1,1,1,1,1,1]=>2
[2,1,1,1,1,1,2]=>4
[2,1,1,1,1,2,1]=>4
[2,1,1,1,1,3]=>44
[2,1,1,1,2,1,1]=>4
[2,1,1,1,2,2]=>12
[2,1,1,1,3,1]=>36
[2,1,1,1,4]=>272
[2,1,1,2,1,1,1]=>4
[2,1,1,2,1,2]=>8
[2,1,1,2,2,1]=>12
[2,1,1,2,3]=>24
[2,1,1,3,1,1]=>28
[2,1,1,3,2]=>92
[2,1,1,4,1]=>184
[2,1,1,5]=>848
[2,1,2,1,1,1,1]=>4
[2,1,2,1,1,2]=>8
[2,1,2,1,2,1]=>8
[2,1,2,1,3]=>40
[2,1,2,2,1,1]=>12
[2,1,2,2,2]=>44
[2,1,2,3,1]=>24
[2,1,2,4]=>232
[2,1,3,1,1,1]=>20
[2,1,3,1,2]=>40
[2,1,3,2,1]=>68
[2,1,3,3]=>316
[2,1,4,1,1]=>112
[2,1,4,2]=>408
[2,1,5,1]=>448
[2,1,6]=>1536
[2,2,1,1,1,1,1]=>6
[2,2,1,1,1,2]=>12
[2,2,1,1,2,1]=>12
[2,2,1,1,3]=>92
[2,2,1,2,1,1]=>12
[2,2,1,2,2]=>36
[2,2,1,3,1]=>68
[2,2,1,4]=>584
[2,2,2,1,1,1]=>22
[2,2,2,1,2]=>44
[2,2,2,2,1]=>90
[2,2,2,3]=>180
[2,2,3,1,1]=>44
[2,2,3,2]=>224
[2,2,4,1]=>336
[2,2,5]=>1664
[2,3,1,1,1,1]=>12
[2,3,1,1,2]=>24
[2,3,1,2,1]=>24
[2,3,1,3]=>160
[2,3,2,1,1]=>56
[2,3,2,2]=>260
[2,3,3,1]=>156
[2,3,4]=>312
[2,4,1,1,1]=>56
[2,4,1,2]=>112
[2,4,2,1]=>304
[2,4,3]=>944
[2,5,1,1]=>192
[2,5,2]=>1184
[2,6,1]=>576
[2,7]=>1600
[3,1,1,1,1,1,1]=>4
[3,1,1,1,1,2]=>8
[3,1,1,1,2,1]=>8
[3,1,1,1,3]=>80
[3,1,1,2,1,1]=>8
[3,1,1,2,2]=>24
[3,1,1,3,1]=>64
[3,1,1,4]=>312
[3,1,2,1,1,1]=>8
[3,1,2,1,2]=>16
[3,1,2,2,1]=>24
[3,1,2,3]=>48
[3,1,3,1,1]=>48
[3,1,3,2]=>160
[3,1,4,1]=>184
[3,1,5]=>1040
[3,2,1,1,1,1]=>16
[3,2,1,1,2]=>32
[3,2,1,2,1]=>32
[3,2,1,3]=>200
[3,2,2,1,1]=>68
[3,2,2,2]=>304
[3,2,3,1]=>136
[3,2,4]=>768
[3,3,1,1,1]=>44
[3,3,1,2]=>88
[3,3,2,1]=>248
[3,3,3]=>788
[3,4,1,1]=>88
[3,4,2]=>584
[3,5,1]=>448
[3,6]=>1664
[4,1,1,1,1,1]=>8
[4,1,1,1,2]=>16
[4,1,1,2,1]=>16
[4,1,1,3]=>144
[4,1,2,1,1]=>16
[4,1,2,2]=>48
[4,1,3,1]=>112
[4,1,4]=>496
[4,2,1,1,1]=>40
[4,2,1,2]=>80
[4,2,2,1]=>192
[4,2,3]=>384
[4,3,1,1]=>136
[4,3,2]=>880
[4,4,1]=>360
[4,5]=>720
[5,1,1,1,1]=>16
[5,1,1,2]=>32
[5,1,2,1]=>32
[5,1,3]=>256
[5,2,1,1]=>96
[5,2,2]=>512
[5,3,1]=>384
[5,4]=>1216
[6,1,1,1]=>32
[6,1,2]=>64
[6,2,1]=>224
[6,3]=>1024
[7,1,1]=>64
[7,2]=>512
[8,1]=>128
[9]=>256
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions.
For example, $QS_{31} = M_{1111} + M_{121} + M_{211} + M_{31}$, so the statistic on the composition $31$ is 4.
Apparently, the sum over all compositions gives the sequence oeis:A138178.
For example, $QS_{31} = M_{1111} + M_{121} + M_{211} + M_{31}$, so the statistic on the composition $31$ is 4.
Apparently, the sum over all compositions gives the sequence oeis:A138178.
Code
def statistic(mu): M = QuasiSymmetricFunctions(ZZ).M() QS = QuasiSymmetricFunctions(ZZ).QS() return sum(coeff for _, coeff in M(QS(mu)))
Created
May 20, 2017 at 21:59 by Martin Rubey
Updated
May 20, 2017 at 22:26 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!