Processing math: 100%

Identifier
Values
[1,1] => [1,0,1,0] => [1,0,1,0] => [[1,0],[0,1]] => 2
[2] => [1,1,0,0] => [1,1,0,0] => [[0,1],[1,0]] => 1
[1,1,1] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => [[1,0,0],[0,1,0],[0,0,1]] => 3
[1,2] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => 2
[2,1] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => 1
[3] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => [[0,0,1],[0,1,0],[1,0,0]] => 1
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => 4
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => 3
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => 2
[1,3] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => 2
[2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => 2
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => 2
[3,1] => [1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0] => [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]] => 1
[4] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 5
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => 2
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 3
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 2
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 1
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]] => 1
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]] => 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 6
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 4
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => 3
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 4
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 2
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 4
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 4
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 3
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 2
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 3
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]] => 2
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 3
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 2
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The maximal sum of entries on a diagonal of an alternating sign matrix.
For example, the sums of the diagonals of the matrix (0010010010110010)
are (0,1,1,0,1,1,0), so the statistic is 1.
This is a natural extension of St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. to alternating sign matrices.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
Cori-Le Borgne involution
Description
The Cori-Le Borgne involution on Dyck paths.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite ζrevζ(1), where ζ is Mp00030zeta map.
Map
to symmetric ASM
Description
The diagonally symmetric alternating sign matrix corresponding to a Dyck path.