Identifier
Values
[1,2,1] => [[2,2,1],[1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,2] => [[3,2],[1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,1,2,1] => [[2,2,1,1],[1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,2,1,1] => [[2,2,2,1],[1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,2,2] => [[3,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,3,1] => [[3,3,1],[2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,1,2] => [[3,2,2],[1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,2,1] => [[3,3,2],[2,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[2,3] => [[4,2],[1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[3,2] => [[4,3],[2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,1,1,2,1] => [[2,2,1,1,1],[1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,2,2] => [[3,2,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,3,1] => [[3,3,1,1],[2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,2,1,2] => [[3,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,2,1] => [[3,3,2,1],[2,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,2,3] => [[4,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,3,1,1] => [[3,3,3,1],[2,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,3,2] => [[4,3,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,4,1] => [[4,4,1],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,1,1,2] => [[3,2,2,2],[1,1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,1,2,1] => [[3,3,2,2],[2,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,3] => [[4,2,2],[1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,2,1,1] => [[3,3,3,2],[2,2,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[2,2,2] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[2,3,1] => [[4,4,2],[3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,4] => [[5,2],[1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[3,1,2] => [[4,3,3],[2,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[3,2,1] => [[4,4,3],[3,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3,3] => [[5,3],[2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[4,2] => [[5,4],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,1,2,2] => [[3,2,1,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,1,3,1] => [[3,3,1,1,1],[2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,2,3] => [[4,2,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,3,2] => [[4,3,1,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,4,1] => [[4,4,1,1],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,2,1,3] => [[4,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,2,3,1] => [[4,4,2,1],[3,1]] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 1
[1,2,4] => [[5,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,3,1,2] => [[4,3,3,1],[2,2]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 1
[1,3,2,1] => [[4,4,3,1],[3,2]] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 1
[1,3,3] => [[5,3,1],[2]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[1,4,1,1] => [[4,4,4,1],[3,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,4,2] => [[5,4,1],[3]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,5,1] => [[5,5,1],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,1,3] => [[4,2,2,2],[1,1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[2,1,2,2] => [[4,3,2,2],[2,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 1
[2,1,3,1] => [[4,4,2,2],[3,1,1]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 1
[2,1,4] => [[5,2,2],[1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[2,2,1,2] => [[4,3,3,2],[2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 1
[2,2,3] => [[5,3,2],[2,1]] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[2,3,1,1] => [[4,4,4,2],[3,3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,3,2] => [[5,4,2],[3,1]] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[2,4,1] => [[5,5,2],[4,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,5] => [[6,2],[1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[3,1,1,2] => [[4,3,3,3],[2,2,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[3,1,2,1] => [[4,4,3,3],[3,2,2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,1,3] => [[5,3,3],[2,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3,2,1,1] => [[4,4,4,3],[3,3,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3,2,2] => [[5,4,3],[3,2]] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[3,3,1] => [[5,5,3],[4,2]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[3,4] => [[6,3],[2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[4,1,2] => [[5,4,4],[3,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[4,2,1] => [[5,5,4],[4,3]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[4,3] => [[6,4],[3]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[5,2] => [[6,5],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,1,1,1,1,2,1] => [[2,2,1,1,1,1,1],[1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,1,1,1,2,1,1] => [[2,2,2,1,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,1,1,2,2] => [[3,2,1,1,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,1,2,1,1,1] => [[2,2,2,2,1,1,1],[1,1,1]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,1,2,1,2] => [[3,2,2,1,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,1,2,2,1] => [[3,3,2,1,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,1,3,2] => [[4,3,1,1,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,2,1,1,2] => [[3,2,2,2,1,1],[1,1,1]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,1,3,1,2] => [[4,3,3,1,1],[2,2]] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 1
[1,1,3,3] => [[5,3,1,1],[2]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[1,2,1,1,1,1,1] => [[2,2,2,2,2,2,1],[1,1,1,1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,2,1,1,1] => [[3,3,3,3,2,1],[2,2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 1
[1,4,1,1,1] => [[4,4,4,4,1],[3,3,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[1,4,1,2] => [[5,4,4,1],[3,3]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 1
[1,4,2,1] => [[5,5,4,1],[4,3]] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 1
[1,4,3] => [[6,4,1],[3]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
>>> Load all 125 entries. <<<
[2,1,1,1,1,2] => [[3,2,2,2,2,2],[1,1,1,1,1]] => ([(0,1)],2) => ([(0,1)],2) => 1
[2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,1,2,1,1] => [[3,3,3,2,2,2],[2,2,1,1,1]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[2,1,1,2,2] => [[4,3,2,2,2],[2,1,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 1
[2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 1
[2,1,2,1,1,1] => [[3,3,3,3,2,2],[2,2,2,1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[2,1,3,1,1] => [[4,4,4,2,2],[3,3,1,1]] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 1
[2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[2,2,1,1,2] => [[4,3,3,3,2],[2,2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 1
[2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,4,1,1] => [[5,5,5,2],[4,4,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,1,1,3] => [[5,3,3,3],[2,2,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3,1,2,1,1] => [[4,4,4,3,3],[3,3,2,2]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3,3,1,1] => [[5,5,5,3],[4,4,2]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[3,4,1] => [[6,6,3],[5,2]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[4,1,1,2] => [[5,4,4,4],[3,3,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[4,1,2,1] => [[5,5,4,4],[4,3,3]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[4,1,3] => [[6,4,4],[3,3]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[4,2,1,1] => [[5,5,5,4],[4,4,3]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[4,2,2] => [[6,5,4],[4,3]] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[4,3,1] => [[6,6,4],[5,3]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[4,4] => [[7,4],[3]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 1
search for individual values
searching the database for the individual values of this statistic
Description
The sum of the values of the Möbius function of a poset.
The Möbius function $\mu$ of a finite poset is defined as
$$\mu (x,y)=\begin{cases} 1& \text{if }x = y\\ -\sum _{z: x\leq z < y}\mu (x,z)& \text{for }x < y\\ 0&\text{otherwise}. \end{cases} $$
Since $\mu(x,y)=0$ whenever $x\not\leq y$, this statistic is
$$ \sum_{x\leq y} \mu(x,y). $$
If the poset has a minimal or a maximal element, then the definition implies immediately that the statistic equals $1$. Moreover, the statistic equals the sum of the statistics of the connected components.
This statistic is also called the magnitude of a poset.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
Map
dominating sublattice
Description
Return the sublattice of the dominance order induced by the support of the expansion of the skew Schur function into Schur functions.
Consider the expansion of the skew Schur function $s_{\lambda/\mu}=\sum_\nu c^\lambda_{\mu, \nu} s_\nu$ as a linear combination of straight Schur functions.
It is shown in [1] that the subposet of the dominance order whose elements are the partitions $\nu$ with $c^\lambda_{\mu, \nu} > 0$ form a lattice.
The example $\lambda = (5^2,4^2,1)$ and $\mu=(3,2)$ shows that this lattice is not a sublattice of the dominance order.
Map
to poset
Description
Return the poset corresponding to the lattice.