Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
St000930: Dyck paths ⟶ ℤ
Values
[1] => [1,0] => 1
[1,1] => [1,0,1,0] => 2
[2] => [1,1,0,0] => 1
[1,1,1] => [1,0,1,0,1,0] => 3
[1,2] => [1,0,1,1,0,0] => 2
[2,1] => [1,1,0,0,1,0] => 2
[3] => [1,1,1,0,0,0] => 1
[1,1,1,1] => [1,0,1,0,1,0,1,0] => 4
[1,1,2] => [1,0,1,0,1,1,0,0] => 3
[1,2,1] => [1,0,1,1,0,0,1,0] => 2
[1,3] => [1,0,1,1,1,0,0,0] => 2
[2,1,1] => [1,1,0,0,1,0,1,0] => 3
[2,2] => [1,1,0,0,1,1,0,0] => 2
[3,1] => [1,1,1,0,0,0,1,0] => 2
[4] => [1,1,1,1,0,0,0,0] => 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => 3
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0] => 2
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 4
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0] => 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
[4,1] => [1,1,1,1,0,0,0,0,1,0] => 2
[5] => [1,1,1,1,1,0,0,0,0,0] => 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => 5
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => 3
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => 4
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => 3
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => 5
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => 4
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => 3
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => 3
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 3
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 4
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 2
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 3
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver.
The $k$-Gorenstein degree is the maximal number $k$ such that the algebra is $k$-Gorenstein. We apply the convention that the value is equal to the global dimension of the algebra in case the $k$-Gorenstein degree is greater than or equal to the global dimension.
The $k$-Gorenstein degree is the maximal number $k$ such that the algebra is $k$-Gorenstein. We apply the convention that the value is equal to the global dimension of the algebra in case the $k$-Gorenstein degree is greater than or equal to the global dimension.
Map
bounce path
Description
The bounce path determined by an integer composition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!