Identifier
-
Mp00097:
Binary words
—delta morphism⟶
Integer compositions
Mp00173: Integer compositions —rotate front to back⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000987: Graphs ⟶ ℤ
Values
0 => [1] => [1] => ([],1) => 0
1 => [1] => [1] => ([],1) => 0
00 => [2] => [2] => ([],2) => 0
01 => [1,1] => [1,1] => ([(0,1)],2) => 1
10 => [1,1] => [1,1] => ([(0,1)],2) => 1
11 => [2] => [2] => ([],2) => 0
000 => [3] => [3] => ([],3) => 0
001 => [2,1] => [1,2] => ([(1,2)],3) => 1
010 => [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
011 => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
100 => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
101 => [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
110 => [2,1] => [1,2] => ([(1,2)],3) => 1
111 => [3] => [3] => ([],3) => 0
0000 => [4] => [4] => ([],4) => 0
0001 => [3,1] => [1,3] => ([(2,3)],4) => 1
0010 => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
0011 => [2,2] => [2,2] => ([(1,3),(2,3)],4) => 2
0100 => [1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
0101 => [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
0110 => [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
0111 => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
1000 => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
1001 => [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
1010 => [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
1011 => [1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
1100 => [2,2] => [2,2] => ([(1,3),(2,3)],4) => 2
1101 => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
1110 => [3,1] => [1,3] => ([(2,3)],4) => 1
1111 => [4] => [4] => ([],4) => 0
00000 => [5] => [5] => ([],5) => 0
00001 => [4,1] => [1,4] => ([(3,4)],5) => 1
00010 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
00011 => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
00100 => [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
00101 => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
00110 => [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
00111 => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
01000 => [1,1,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
01001 => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01010 => [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01011 => [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01100 => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01101 => [1,2,1,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01110 => [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01111 => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
10000 => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
10001 => [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
10010 => [1,2,1,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
10011 => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
10100 => [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
10101 => [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
10110 => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
10111 => [1,1,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
11000 => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
11001 => [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
11010 => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
11011 => [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
11100 => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
11101 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
11110 => [4,1] => [1,4] => ([(3,4)],5) => 1
11111 => [5] => [5] => ([],5) => 0
000000 => [6] => [6] => ([],6) => 0
000001 => [5,1] => [1,5] => ([(4,5)],6) => 1
000010 => [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
000011 => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 2
000100 => [3,1,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 3
000101 => [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
000110 => [3,2,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
000111 => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
001000 => [2,1,3] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
001001 => [2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
001010 => [2,1,1,1,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
001011 => [2,1,1,2] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
001100 => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
001101 => [2,2,1,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
001110 => [2,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
001111 => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
010000 => [1,1,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 5
010001 => [1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
010010 => [1,1,2,1,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
010011 => [1,1,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
010100 => [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
010101 => [1,1,1,1,1,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
010110 => [1,1,1,2,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
010111 => [1,1,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011000 => [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011001 => [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011010 => [1,2,1,1,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011011 => [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011100 => [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011101 => [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011110 => [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011111 => [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
100000 => [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
100001 => [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100010 => [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100011 => [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100100 => [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100101 => [1,2,1,1,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100110 => [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
>>> Load all 254 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of positive eigenvalues of the Laplacian matrix of the graph.
This is the number of vertices minus the number of connected components of the graph.
This is the number of vertices minus the number of connected components of the graph.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
delta morphism
Description
Applies the delta morphism to a binary word.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.
Map
rotate front to back
Description
The front to back rotation of the entries of an integer composition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!