Identifier
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => 4
[1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 5
[1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,1,0,0] => 6
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => 7
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => 7
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0] => 7
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0] => 9
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 7
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 8
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 8
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => 8
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 10
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => 8
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => 9
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => 8
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 8
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => 9
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 10
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0] => 10
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => 10
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 13
[] => [1,0] => [1,0] => 3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of indecomposable modules with projective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
promotion
Description
The promotion of the two-row standard Young tableau of a Dyck path.
Dyck paths of semilength $n$ are in bijection with standard Young tableaux of shape $(n^2)$, see Mp00033to two-row standard tableau.
This map is the bijection on such standard Young tableaux given by Schützenberger's promotion. For definitions and details, see [1] and the references therein.