Your data matches 120 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
St001003: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 4
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 5
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 6
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 7
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 7
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 7
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 9
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 7
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 8
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 8
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 8
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 10
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 9
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 8
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 8
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 9
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 10
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 10
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 10
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 13
[]
=> [1,0]
=> [1,0]
=> 3
Description
The number of indecomposable modules with projective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00143: Dyck paths inverse promotionDyck paths
St001254: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 4 - 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3 = 5 - 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 4 = 6 - 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 6 - 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 5 = 7 - 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 5 = 7 - 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 5 = 7 - 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 7 = 9 - 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 7 - 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 6 = 8 - 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 6 = 8 - 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 6 = 8 - 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 8 = 10 - 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 6 = 8 - 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 7 = 9 - 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 6 = 8 - 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 6 = 8 - 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 7 = 9 - 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 8 = 10 - 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 8 = 10 - 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 8 = 10 - 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 11 = 13 - 2
[]
=> [1,0]
=> [1,0]
=> 1 = 3 - 2
Description
The vector space dimension of the first extension-group between A/soc(A) and J when A is the corresponding Nakayama algebra with Jacobson radical J.
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
St001019: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2 = 4 - 2
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3 = 5 - 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 4 = 6 - 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 6 - 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 5 = 7 - 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 5 = 7 - 2
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 5 = 7 - 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 7 = 9 - 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 7 - 2
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6 = 8 - 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 6 = 8 - 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6 = 8 - 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 8 = 10 - 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 6 = 8 - 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 7 = 9 - 2
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 6 = 8 - 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 6 = 8 - 2
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 7 = 9 - 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 8 = 10 - 2
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 8 = 10 - 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 8 = 10 - 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 11 = 13 - 2
[]
=> []
=> [1,0]
=> [1,0]
=> 1 = 3 - 2
Description
Sum of the projective dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001228: Dyck paths ⟶ ℤResult quality: 89% values known / values provided: 96%distinct values known / distinct values provided: 89%
Values
[1,0]
=> [1] => [1,0]
=> 1 = 4 - 3
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 2 = 5 - 3
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 3 = 6 - 3
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 3 = 6 - 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 4 = 7 - 3
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 4 = 7 - 3
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 4 = 7 - 3
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 6 = 9 - 3
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4 = 7 - 3
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5 = 8 - 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5 = 8 - 3
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5 = 8 - 3
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 7 = 10 - 3
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5 = 8 - 3
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 6 = 9 - 3
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5 = 8 - 3
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5 = 8 - 3
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 6 = 9 - 3
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 7 = 10 - 3
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 7 = 10 - 3
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 7 = 10 - 3
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 10 = 13 - 3
[]
=> [] => ?
=> ? = 3 - 3
Description
The vector space dimension of the space of module homomorphisms between J and itself when J denotes the Jacobson radical of the corresponding Nakayama algebra.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 89% values known / values provided: 96%distinct values known / distinct values provided: 89%
Values
[1,0]
=> [1] => [1,0]
=> [1,1,0,0]
=> 1 = 4 - 3
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 5 - 3
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 3 = 6 - 3
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 6 - 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4 = 7 - 3
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 7 - 3
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 7 - 3
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6 = 9 - 3
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 7 - 3
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5 = 8 - 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5 = 8 - 3
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5 = 8 - 3
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7 = 10 - 3
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5 = 8 - 3
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6 = 9 - 3
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5 = 8 - 3
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5 = 8 - 3
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6 = 9 - 3
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7 = 10 - 3
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7 = 10 - 3
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7 = 10 - 3
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10 = 13 - 3
[]
=> [] => ?
=> ?
=> ? = 3 - 3
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$. 2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$ 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00010: Binary trees to ordered tree: left child = left brotherOrdered trees
St000400: Ordered trees ⟶ ℤResult quality: 89% values known / values provided: 96%distinct values known / distinct values provided: 89%
Values
[1,0]
=> [1] => [.,.]
=> [[]]
=> 1 = 4 - 3
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [[],[]]
=> 2 = 5 - 3
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [[[]]]
=> 3 = 6 - 3
[1,0,1,0,1,0]
=> [3,2,1] => [[[.,.],.],.]
=> [[],[],[]]
=> 3 = 6 - 3
[1,0,1,1,0,0]
=> [2,3,1] => [[.,[.,.]],.]
=> [[[]],[]]
=> 4 = 7 - 3
[1,1,0,0,1,0]
=> [3,1,2] => [[.,.],[.,.]]
=> [[],[[]]]
=> 4 = 7 - 3
[1,1,0,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [[],[[]]]
=> 4 = 7 - 3
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[[[]]]]
=> 6 = 9 - 3
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [[],[],[],[]]
=> 4 = 7 - 3
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[[.,[.,.]],.],.]
=> [[[]],[],[]]
=> 5 = 8 - 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> 5 = 8 - 3
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> 5 = 8 - 3
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> [[[[]]],[]]
=> 7 = 10 - 3
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 5 = 8 - 3
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> 6 = 9 - 3
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 5 = 8 - 3
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 5 = 8 - 3
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> 6 = 9 - 3
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 7 = 10 - 3
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 7 = 10 - 3
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 7 = 10 - 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[[[[]]]]]
=> 10 = 13 - 3
[]
=> [] => .
=> ?
=> ? = 3 - 3
Description
The path length of an ordered tree. This is the sum of the lengths of all paths from the root to a node, see Section 2.3.4.5 of [1].
Mp00124: Dyck paths Adin-Bagno-Roichman transformationDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000984: Dyck paths ⟶ ℤResult quality: 89% values known / values provided: 96%distinct values known / distinct values provided: 89%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,1,0,0]
=> 1 = 4 - 3
[1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 5 - 3
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 3 = 6 - 3
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 6 - 3
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4 = 7 - 3
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 7 - 3
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 7 - 3
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6 = 9 - 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 7 - 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5 = 8 - 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5 = 8 - 3
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 5 = 8 - 3
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7 = 10 - 3
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5 = 8 - 3
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6 = 9 - 3
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 5 = 8 - 3
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 5 = 8 - 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 6 = 9 - 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7 = 10 - 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 7 = 10 - 3
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 7 = 10 - 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10 = 13 - 3
[]
=> []
=> []
=> [1,0]
=> ? = 3 - 3
Description
The number of boxes below precisely one peak. Imagine that each peak of the Dyck path, drawn with north and east steps, casts a shadow onto the triangular region between it and the diagonal. This statistic is the number of cells which are in the shade of precisely one peak.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001295: Dyck paths ⟶ ℤResult quality: 89% values known / values provided: 96%distinct values known / distinct values provided: 89%
Values
[1,0]
=> [1] => [1,0]
=> [1,1,0,0]
=> 1 = 4 - 3
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 5 - 3
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 3 = 6 - 3
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 6 - 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4 = 7 - 3
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 7 - 3
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 7 - 3
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6 = 9 - 3
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 7 - 3
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5 = 8 - 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5 = 8 - 3
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5 = 8 - 3
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7 = 10 - 3
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5 = 8 - 3
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6 = 9 - 3
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5 = 8 - 3
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5 = 8 - 3
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6 = 9 - 3
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7 = 10 - 3
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7 = 10 - 3
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7 = 10 - 3
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10 = 13 - 3
[]
=> [] => ?
=> ?
=> ? = 3 - 3
Description
Gives the vector space dimension of the homomorphism space between J^2 and J^2.
Matching statistic: St001821
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00170: Permutations to signed permutationSigned permutations
St001821: Signed permutations ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 1 = 4 - 3
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 2 = 5 - 3
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => 3 = 6 - 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => 3 = 6 - 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,4,1,3] => 4 = 7 - 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,1,4,2] => 4 = 7 - 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,4,1,2] => 4 = 7 - 3
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => 6 = 9 - 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => ? = 7 - 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [2,3,5,1,4] => ? = 8 - 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [2,4,1,5,3] => ? = 8 - 3
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [2,4,5,1,3] => ? = 8 - 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [2,5,1,3,4] => ? = 10 - 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [3,1,4,5,2] => ? = 8 - 3
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [3,1,5,2,4] => ? = 9 - 3
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,4,1,5,2] => ? = 8 - 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [3,4,5,1,2] => ? = 8 - 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,5,1,2,4] => ? = 9 - 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [4,1,2,5,3] => ? = 10 - 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [4,1,5,2,3] => ? = 10 - 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [4,5,1,2,3] => ? = 10 - 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [5,1,2,3,4] => ? = 13 - 3
[]
=> [1,0]
=> [1] => [1] => 0 = 3 - 3
Description
The sorting index of a signed permutation. A signed permutation $\sigma = [\sigma(1),\ldots,\sigma(n)]$ can be sorted $[1,\ldots,n]$ by signed transpositions in the following way: First move $\pm n$ to its position and swap the sign if needed, then $\pm (n-1), \pm (n-2)$ and so on. For example for $[2,-4,5,-1,-3]$ we have the swaps $$ [2,-4,5,-1,-3] \rightarrow [2,-4,-3,-1,5] \rightarrow [2,1,-3,4,5] \rightarrow [2,1,3,4,5] \rightarrow [1,2,3,4,5] $$ given by the signed transpositions $(3,5), (-2,4), (-3,3), (1,2)$. If $(i_1,j_1),\ldots,(i_n,j_n)$ is the decomposition of $\sigma$ obtained this way (including trivial transpositions) then the sorting index of $\sigma$ is defined as $$ \operatorname{sor}_B(\sigma) = \sum_{k=1}^{n-1} j_k - i_k - \chi(i_k < 0), $$ where $\chi(i_k < 0)$ is 1 if $i_k$ is negative and 0 otherwise. For $\sigma = [2,-4,5,-1,-3]$ we have $$ \operatorname{sor}_B(\sigma) = (5-3) + (4-(-2)-1) + (3-(-3)-1) + (2-1) = 13. $$
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St001874: Permutations ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 56%
Values
[1,0]
=> [(1,2)]
=> [2,1] => 1 = 4 - 3
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 2 = 5 - 3
[1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => 3 = 6 - 3
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 3 = 6 - 3
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 4 = 7 - 3
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 4 = 7 - 3
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => 4 = 7 - 3
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => 6 = 9 - 3
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => ? = 7 - 3
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 8 - 3
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 8 - 3
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? = 8 - 3
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 10 - 3
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 8 - 3
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => ? = 9 - 3
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 8 - 3
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 8 - 3
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => ? = 9 - 3
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 10 - 3
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => ? = 10 - 3
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => ? = 10 - 3
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => ? = 13 - 3
[]
=> []
=> ? => ? = 3 - 3
Description
Lusztig's a-function for the symmetric group. Let $x$ be a permutation corresponding to the pair of tableaux $(P(x),Q(x))$ by the Robinson-Schensted correspondence and $\operatorname{shape}(Q(x)')=( \lambda_1,...,\lambda_k)$ where $Q(x)'$ is the transposed tableau. Then $a(x)=\sum\limits_{i=1}^{k}{\binom{\lambda_i}{2}}$. See exercise 10 on page 198 in the book by Björner and Brenti "Combinatorics of Coxeter Groups" for equivalent characterisations and properties.
The following 110 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000055The inversion sum of a permutation. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000809The reduced reflection length of the permutation. St001412Number of minimal entries in the Bruhat order matrix of a permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001388The number of non-attacking neighbors of a permutation. St000539The number of odd inversions of a permutation. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000509The diagonal index (content) of a partition. St001645The pebbling number of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001812The biclique partition number of a graph. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001180Number of indecomposable injective modules with projective dimension at most 1. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000039The number of crossings of a permutation. St000043The number of crossings plus two-nestings of a perfect matching. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000173The segment statistic of a semistandard tableau. St000223The number of nestings in the permutation. St000360The number of occurrences of the pattern 32-1. St000491The number of inversions of a set partition. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000610The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St001513The number of nested exceedences of a permutation. St001549The number of restricted non-inversions between exceedances. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001727The number of invisible inversions of a permutation. St001843The Z-index of a set partition. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000477The weight of a partition according to Alladi. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000997The even-odd crank of an integer partition. St000284The Plancherel distribution on integer partitions. St000478Another weight of a partition according to Alladi. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000927The alternating sum of the coefficients of the character polynomial of an integer partition. St000934The 2-degree of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000928The sum of the coefficients of the character polynomial of an integer partition. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000716The dimension of the irreducible representation of Sp(6) labelled by an integer partition. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001960The number of descents of a permutation minus one if its first entry is not one. St001404The number of distinct entries in a Gelfand Tsetlin pattern. St001002Number of indecomposable modules with projective and injective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001488The number of corners of a skew partition. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000077The number of boxed and circled entries. St000880The number of connected components of long braid edges in the graph of braid moves of a permutation. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001769The reflection length of a signed permutation. St001823The Stasinski-Voll length of a signed permutation. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St001861The number of Bruhat lower covers of a permutation. St001896The number of right descents of a signed permutations. St001946The number of descents in a parking function. St000112The sum of the entries reduced by the index of their row in a semistandard tableau. St000174The flush statistic of a semistandard tableau. St000879The number of long braid edges in the graph of braid moves of a permutation. St000881The number of short braid edges in the graph of braid moves of a permutation. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001557The number of inversions of the second entry of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001856The number of edges in the reduced word graph of a permutation. St001862The number of crossings of a signed permutation.