Identifier
-
Mp00178:
Binary words
—to composition⟶
Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St001011: Dyck paths ⟶ ℤ
Values
0 => [2] => [1,1,0,0] => [1,1,0,0] => 0
1 => [1,1] => [1,0,1,0] => [1,0,1,0] => 1
00 => [3] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => 0
01 => [2,1] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 1
10 => [1,2] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 1
11 => [1,1,1] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => 1
000 => [4] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => 1
010 => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0] => 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => 1
100 => [1,3] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,0] => 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0] => 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => 1
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => 1
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => 1
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => 1
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => 1
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 1
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 1
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 1
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 1
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 1
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 1
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 1
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 1
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 1
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 1
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 1
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 1
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 1
000000 => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
000001 => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
000010 => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 1
000011 => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => 1
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 1
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0,1,0] => 1
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => 1
000111 => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => 1
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => 1
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0,1,0] => 1
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,1,0,0] => 1
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0,1,0,1,0] => 1
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0] => 1
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0,1,0] => 1
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => 1
001111 => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => 1
010000 => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => 1
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => 1
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,1,0,0] => 1
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,0,1,0,1,0] => 1
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,1,0,0,0] => 1
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0,1,0] => 1
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,1,0,0,1,0,1,0,0] => 1
010111 => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,0,1,0,1,0,1,0] => 1
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,1,0,1,0,0,0,0] => 1
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,0,1,0] => 1
011010 => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,1,0,0] => 1
011011 => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0,1,0,1,0] => 1
011100 => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,1,0,1,0,0,0] => 1
011101 => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0,1,0] => 1
011110 => [2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => 1
011111 => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => 1
100000 => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => 1
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 1
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,1,0,0] => 1
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,0,1,0,1,0] => 1
100100 => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,1,1,0,1,0,0,0,1,0,0,0] => 1
100101 => [1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0,1,0] => 1
100110 => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,1,0,0] => 1
>>> Load all 127 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
switch returns and last double rise
Description
An alternative to the Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending 1 to a binary word w, the i-th part of the composition equals 1 plus the number of zeros after the i-th 1 in w.
This map is not surjective, since the empty composition does not have a preimage.
Prepending 1 to a binary word w, the i-th part of the composition equals 1 plus the number of zeros after the i-th 1 in w.
This map is not surjective, since the empty composition does not have a preimage.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!