Identifier
Values
[1,1,1] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[1,1,1,1] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[2,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,1,1,1,1] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,1,1,2] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[1,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[2,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[3,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,1,2] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,1,1,3] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[1,1,2,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,2,2] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,2,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,2,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[2,2,1,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[2,2,2] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[3,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[4,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,1,1,1,1,2] => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,1,1,3] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,1,1,2,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,2,2] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,1,4] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[1,1,2,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,2,2,1] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,3,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,2,2,1,1] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,2,2] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,3,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,3,3] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,4,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,1,1,2] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,1,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[2,1,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[2,1,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,2,1,1,1] => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,2,2,1] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[2,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[3,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[3,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[3,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[4,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[5,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,1,1,1,1,3] => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,1,1,2,2] => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,1,4] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,1,1,2,2,1] => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,3,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,5] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[1,1,2,1,1,2] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,2,2,1,1] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,2,2,2] => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,3,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,3,3] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,1,4,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,1,1,1,2] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,1,1,3] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,2,1,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[1,2,1,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,2,2,1,1,1] => [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,2,2,1] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,2,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,2,3,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,3,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,3,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,3,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,3,3,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,4,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,5,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,1,1,1,1,2] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,1,1,3] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,1,2,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,1,2,2] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,1,4] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[2,1,2,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,2,2,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,1,3,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[2,2,1,1,2] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,2,2,1,1] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,2,2,2] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[2,3,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3,3] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[2,4,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[3,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,1,1,2] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,1,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[3,1,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[3,1,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[3,2,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,2,2,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[3,3,1,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[4,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,1,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
>>> Load all 537 entries. <<<
[4,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[4,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[5,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[6,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,1,1,1,1,4] => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,1,1,5] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,1,1,2,2,2] => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,3,3] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,1,4,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,6] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[1,1,2,1,1,3] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,2,1,2,2] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,2,2,2,1] => [2,3,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,2,2,3] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,2,3,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,3,1,1,2] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,3,2,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,3,2,2] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,3,3,1] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,4,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,5,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,1,1,1,3] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,1,1,2,2] => [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,1,1,4] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,2,1,2,2,1] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[1,2,1,3,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[1,2,2,1,1,2] => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,2,2,1,1] => [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,2,2,2] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,2,4] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,2,3,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,3,3] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,2,4,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,3,1,1,1,2] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,1,1,3] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,3,1,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[1,3,1,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,3,2,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,3,2,2,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,3,3,1,1] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,3,3,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,4,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,4,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,4,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,4,4] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,5,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,6,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,1,1,1,1,3] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,1,1,2,2] => [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,1,1,4] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,1,2,2,1] => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,1,3,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,1,5] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[2,1,2,1,1,2] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[2,1,2,2,1,1] => [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,2,2,2] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,3,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,3,3] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,1,4,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[2,2,1,1,1,2] => [2,3,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,1,1,3] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,2,1,2,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,2,1,2,2] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,2,2,1,1,1] => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,2,2,1] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,2,2,3] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[2,2,3,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,3,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[2,3,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,3,3,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[2,4,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,5,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[3,1,1,1,1,2] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,1,1,3] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,1,2,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,1,2,2] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,1,4] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[3,1,2,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,2,2,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,1,3,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[3,2,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,2,2,1,1] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,2,2,2] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[3,3,1,1,1] => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,3,3] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[3,4,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[4,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,1,1,2] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,1,1,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[4,1,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[4,1,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[4,2,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,2,2,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[4,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[5,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[5,1,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[5,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[5,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[6,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[7,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,1,1,1,1,5] => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,1,1,3,3] => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,1,6] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,1,1,2,2,3] => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,3,2,2] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,3,3,1] => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,5,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,7] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[1,1,2,1,1,4] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,2,2,4] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,2,3,3] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,2,4,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,3,1,1,3] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,3,1,2,2] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,3,2,2,1] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,3,3,1,1] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,3,3,2] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,4,1,1,2] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,4,2,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,4,2,2] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,4,4] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,1,5,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,6,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,1,1,1,4] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,1,1,5] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,2,1,2,2,2] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,1,3,3] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,2,1,4,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[1,2,2,1,1,3] => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,2,1,2,2] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,2,2,2,1] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,2,2,3] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,2,3,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,2,5] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,2,3,1,1,2] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[1,2,3,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[1,2,3,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,2,3,3,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,2,4,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,5,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,3,1,1,1,3] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,1,1,2,2] => [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,1,1,4] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,3,1,2,2,1] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[1,3,1,3,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[1,3,2,1,1,2] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[1,3,2,2,1,1] => [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,2,2,2] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,3,3,1,1,1] => [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,3,3] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,3,4,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,4,1,1,1,2] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,1,1,3] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,4,1,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[1,4,1,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,4,2,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,2,2,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,4,3,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,4,4,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,5,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,5,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,5,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,6,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,7,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,1,1,1,1,4] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,1,1,5] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,1,2,2,2] => [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,1,3,3] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,1,4,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,1,6] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[2,1,2,1,1,3] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[2,1,2,1,2,2] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[2,1,2,2,2,1] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,2,2,3] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,1,2,3,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[2,1,3,1,1,2] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[2,1,3,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[2,1,3,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[2,1,3,3,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,1,4,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,1,5,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[2,2,1,1,1,3] => [2,3,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,1,1,2,2] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,1,1,4] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,2,1,2,2,1] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,1,3,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,2,2,1,1,2] => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,2,2,1,1] => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,2,2,2] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,2,2,4] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[2,2,3,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,3,3] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[2,2,4,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3,1,1,1,2] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,3,1,1,3] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,3,1,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[2,3,1,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[2,3,2,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,2,2,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,3,3,1,1] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3,3,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[2,4,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,4,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[2,4,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,4,4] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[2,5,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,6,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[3,1,1,1,1,3] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,1,1,2,2] => [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,1,1,4] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,1,2,2,1] => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,1,3,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,1,5] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[3,1,2,1,1,2] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[3,1,2,2,1,1] => [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,2,2,2] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,3,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,3,3] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[3,1,4,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[3,2,1,1,1,2] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,1,1,3] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,2,1,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[3,2,1,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[3,2,2,1,1,1] => [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,2,2,1] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,2,2,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[3,2,3,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[3,3,1,1,2] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,3,2,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,3,2,2] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[3,3,3,1] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[3,4,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,5,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[4,1,1,1,1,2] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,1,1,3] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,1,1,2,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,1,2,2] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,1,1,4] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[4,1,2,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,2,2,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[4,1,3,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[4,2,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[4,2,2,1,1] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,2,2,2] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[4,3,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,3,3] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[4,4,1,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[5,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,1,1,1,2] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[5,1,1,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[5,1,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[5,1,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[5,2,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[5,2,2,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[5,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[6,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[6,1,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[6,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[6,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[7,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[8,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,8,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,1,1,1,4,4] => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,2,2,3,3] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,3,3,2,2] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,3,2,2,3] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,4,4,1,1] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,4,1,1,4] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,5,5] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[2,2,1,1,3,3] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,2,2,2,2] => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,3,3,1,1] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,3,1,1,3] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,4,4] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[2,1,1,2,3,3] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,2,3,2,2] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[2,1,2,2,2,3] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,3,4,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[2,1,3,1,1,4] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[3,3,1,1,2,2] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,3,2,2,1,1] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,3,2,1,1,2] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,3,3,3] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[3,2,1,2,2,2] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,2,2,3,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,2,1,1,3] => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,1,3,2,2] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,1,2,2,3] => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,2,4,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[3,1,2,1,1,4] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[4,4,2,2] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[4,3,1,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[4,3,1,1,1,2] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,2,1,3,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[4,2,1,1,1,3] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,2,2,4] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[4,1,1,4,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,1,1,1,4] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,5,1,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[5,1,1,5] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,2,2,3,3,1] => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,2,3,2,2] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,3,2,2,2] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,3,3,3] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,4,4,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,3,3,2,2,1] => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,3,3,2] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,3,4,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,3,2,3,3] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,3,4,4] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,4,3,3,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,4,3,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,4,4,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,4,2,2,3] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,5,5,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,5,3,3] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,3,2,2,2,1] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,3,3,3,1] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3,3,2,2] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,4,4,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[2,4,2,2,2] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,4,3,3] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,2,3,2,2,1] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,3,3,2] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,2,4,2,2] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,2,2,3,3] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3,2,2,3] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,3,3,4] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[2,5,5] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[3,4,2,2,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,5,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[3,3,2,2,2] => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,4,4,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[3,2,3,3,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[3,2,3,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[3,2,2,2,3] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,3,3,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[4,4,4] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[4,2,3,3] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,6,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,5,1,1,1,2] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,6,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[1,7,1,1,2] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,6,1,1,1,2] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,2,1,1,2] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[1,2,2,2,2,2] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,2,1,1,4] => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,1,3,2,2] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[1,2,1,2,2,3] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[1,2,1,1,3,3] => [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,1,1,1,5] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,3,2,2,2] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,3,1,1,4] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,2,3,2,2] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,2,2,2,3] => [2,3,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,2,1,3,3] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,2,1,1,5] => [2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,4,2,2] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,3,3,2] => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,2,3,3] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,2,2,4] => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,1,1,6] => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,2,2,2,5] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,2,3,3] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,1,4,3,3] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[5,2,2,2,1] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,6,2,2,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[7,1,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[5,3,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[3,5,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,7,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[5,1,4,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[3,3,4,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,5,4,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[3,1,6,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,3,6,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,1,8,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,3,3,2] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[3,4,4] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[2,3,3,3] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[3,2,2,2,2,1] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,3,2,2,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[4,2,2,2,2] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[5,3,3,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[5,3,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[5,2,2,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
[6,3,3] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[2,2,2,2,2,1] => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,2,2,2,1] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,3,1,2,2,1] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[3,2,1,2,2,1] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[4,1,1,2,2,1] => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,2,3,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,2,3,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[2,3,1,3,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[3,2,1,3,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[4,1,1,3,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,3,2,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,1,3,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[2,3,2,2,1,1] => [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,2,2,1,1] => [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,1,2,2,1,1] => [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,4,1,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[3,3,1,2,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,2,1,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[5,1,1,2,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,2,4,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,4,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,3,3,1,1,1] => [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,3,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[4,1,3,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[2,4,2,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[3,3,2,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[4,2,2,1,1,1] => [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[5,1,2,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[6,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,4,2,2,1] => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[1,2,5,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[1,4,2,2,2,1] => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,2,2,2] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,5,2,2,1] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[2,6,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
[6,2,2,2] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[2,2,2,2,4] => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,2,2,2,2,3] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,2,2,4] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[5,1,1,1,1,2] => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,7,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,9,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,2,2,6] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[1,5,5] => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,1,2,2,2,4] => [2,3,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,2,5,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,5,2,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,4,2,2,1,1] => [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
search for individual values
searching the database for the individual values of this statistic
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Map
delta morphism
Description
Apply the delta morphism to an integer composition.
The delta morphism of a composition $C$ is the compositions composed of the lengths of consecutive runs of the same integer in $C$.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
complement
Description
The complement of a composition.
The complement of a composition $I$ is defined as follows:
If $I$ is the empty composition, then the complement is also the empty composition. Otherwise, let $S$ be the descent set corresponding to $I=(i_1,\dots,i_k)$, that is, the subset
$$\{ i_1, i_1 + i_2, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$$
of $\{ 1, 2, \ldots, |I|-1 \}$. Then, the complement of $I$ is the composition of the same size as $I$, whose descent set is $\{ 1, 2, \ldots, |I|-1 \} \setminus S$.
The complement of a composition $I$ coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to $I$.