Identifier
Values
[1,0] => [1,1,0,0] => [2,3,1] => [3,1,2] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [4,3,1,2] => [4,2,3,1] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [2,3,4,1] => [4,1,2,3] => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [5,4,1,2,3] => [4,2,5,3,1] => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [4,3,1,5,2] => [5,2,3,1,4] => 0
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [2,5,4,1,3] => [5,3,4,1,2] => 0
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => [5,2,3,4,1] => 0
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => [5,1,2,3,4] => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => [5,3,1,6,4,2] => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [5,4,1,2,6,3] => [4,2,6,3,1,5] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [6,3,1,5,2,4] => [6,4,5,2,3,1] => 0
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [6,4,1,5,2,3] => [5,2,4,6,3,1] => 0
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [4,3,1,5,6,2] => [6,2,3,1,4,5] => 0
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [2,6,5,1,3,4] => [5,3,6,4,1,2] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [2,5,4,1,6,3] => [6,3,4,1,2,5] => 0
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => [5,2,3,6,4,1] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [6,5,4,1,2,3] => [5,2,6,3,4,1] => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [5,3,4,1,6,2] => [6,2,3,4,1,5] => 0
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => [6,4,5,1,2,3] => 0
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => [6,3,4,5,1,2] => 0
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => [6,2,3,4,5,1] => 0
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => [6,1,2,3,4,5] => 0
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [4,3,1,5,6,7,2] => [7,2,3,1,4,5,6] => 0
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [2,7,4,1,6,3,5] => [7,5,6,3,4,1,2] => 0
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [2,5,4,1,6,7,3] => [7,3,4,1,2,5,6] => 0
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [5,3,4,1,6,7,2] => [7,2,3,4,1,5,6] => 0
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [6,3,4,5,1,7,2] => [7,2,3,4,5,1,6] => 0
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [2,3,4,7,6,1,5] => [7,5,6,1,2,3,4] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [2,3,7,5,6,1,4] => [7,4,5,6,1,2,3] => 0
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => 0
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [4,3,1,5,6,7,8,2] => [8,2,3,1,4,5,6,7] => 0
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,0] => [2,7,4,1,6,3,8,5] => [8,5,6,3,4,1,2,7] => 0
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [6,7,8,1,2,3,4,5] => [8,5,2,7,4,1,6,3] => 2
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0] => [8,3,4,1,6,7,2,5] => [8,5,6,7,2,3,4,1] => 0
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [5,3,4,1,6,7,8,2] => [8,2,3,4,1,5,6,7] => 0
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,1,0,0] => [2,3,8,5,1,7,4,6] => [8,6,7,4,5,1,2,3] => 0
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [2,3,4,5,8,7,1,6] => [8,6,7,1,2,3,4,5] => 0
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [2,3,4,8,6,7,1,5] => [8,5,6,7,1,2,3,4] => 0
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,1] => [8,1,2,3,4,5,6,7] => 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0] => [4,3,1,5,6,7,8,9,2] => [9,2,3,1,4,5,6,7,8] => 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0] => [2,3,4,5,6,9,8,1,7] => [9,7,8,1,2,3,4,5,6] => 0
[1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0] => [2,3,4,5,9,7,8,1,6] => [9,6,7,8,1,2,3,4,5] => 0
[1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0] => [2,3,4,9,6,7,8,1,5] => [9,5,6,7,8,1,2,3,4] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,1] => [9,1,2,3,4,5,6,7,8] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0] => [2,3,4,5,6,7,10,9,1,8] => [10,8,9,1,2,3,4,5,6,7] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0] => [2,3,4,5,6,10,8,9,1,7] => [10,7,8,9,1,2,3,4,5,6] => 0
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0] => [2,3,4,5,10,7,8,9,1,6] => [10,6,7,8,9,1,2,3,4,5] => 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,1] => [10,1,2,3,4,5,6,7,8,9] => 0
[] => [1,0] => [2,1] => [2,1] => 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,11,1] => [11,1,2,3,4,5,6,7,8,9,10] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of occurrences of the consecutive pattern 132 in a permutation.
This is the number of occurrences of the pattern $132$, where the matched entries are all adjacent.
Map
inverse first fundamental transformation
Description
Let $\sigma = (i_{11}\cdots i_{1k_1})\cdots(i_{\ell 1}\cdots i_{\ell k_\ell})$ be a permutation given by cycle notation such that every cycle starts with its maximal entry, and all cycles are ordered increasingly by these maximal entries.
Maps $\sigma$ to the permutation $[i_{11},\ldots,i_{1k_1},\ldots,i_{\ell 1},\ldots,i_{\ell k_\ell}]$ in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.