Identifier
- St001089: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>0
[1,1,0,0]=>0
[1,0,1,0,1,0]=>0
[1,0,1,1,0,0]=>0
[1,1,0,0,1,0]=>0
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0]=>0
[1,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,0]=>0
[1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0]=>0
[1,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,0]=>1
[1,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,0,1,0]=>0
[1,1,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,0]=>0
[1,0,1,0,1,1,0,0,1,0]=>0
[1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,0,0]=>0
[1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,0]=>0
[1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0]=>0
[1,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0]=>0
[1,1,0,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,0,0]=>0
[1,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,1,0,0]=>0
[1,1,0,1,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0]=>0
[1,1,1,0,0,0,1,1,0,0]=>0
[1,1,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0]=>0
[1,1,1,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,0,1,1,0,0]=>0
[1,0,1,0,1,0,1,1,0,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,0,1,1,1,0,0,0]=>0
[1,0,1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0,1,1,0,0]=>0
[1,0,1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,0,1,1,1,0,0,0,1,0]=>0
[1,0,1,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,0,1,1,1,1,0,0,0,0]=>0
[1,0,1,1,0,0,1,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,0,1,1,0,0]=>0
[1,0,1,1,0,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,1,0,0]=>1
[1,0,1,1,0,0,1,1,1,0,0,0]=>0
[1,0,1,1,0,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,1,0,0]=>0
[1,0,1,1,0,1,0,1,1,0,0,0]=>1
[1,0,1,1,0,1,1,0,0,0,1,0]=>1
[1,0,1,1,0,1,1,0,0,1,0,0]=>2
[1,0,1,1,0,1,1,0,1,0,0,0]=>2
[1,0,1,1,0,1,1,1,0,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0,1,0]=>0
[1,0,1,1,1,0,0,0,1,1,0,0]=>0
[1,0,1,1,1,0,0,1,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,1,0,0,0,1,0]=>2
[1,0,1,1,1,0,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,1,0,0,0]=>2
[1,0,1,1,1,0,1,1,0,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,0]=>0
[1,0,1,1,1,1,0,0,0,1,0,0]=>1
[1,0,1,1,1,1,0,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>0
[1,1,0,0,1,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,0,1,1,1,0,0,0]=>0
[1,1,0,0,1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,1,0,0]=>1
[1,1,0,0,1,1,0,1,1,0,0,0]=>1
[1,1,0,0,1,1,1,0,0,0,1,0]=>0
[1,1,0,0,1,1,1,0,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,1,0,0,0]=>2
[1,1,0,0,1,1,1,1,0,0,0,0]=>0
[1,1,0,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,1,0,1,0,0]=>1
[1,1,0,1,0,1,0,1,1,0,0,0]=>0
[1,1,0,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,1,0,0,0]=>1
[1,1,0,1,0,1,1,1,0,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0,1,0]=>1
[1,1,0,1,1,0,0,0,1,1,0,0]=>1
[1,1,0,1,1,0,0,1,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,1,0,0,1,0,0]=>1
[1,1,0,1,1,0,1,0,1,0,0,0]=>1
[1,1,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,0]=>1
[1,1,0,1,1,1,0,0,0,1,0,0]=>2
[1,1,0,1,1,1,0,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,1,0,0,0,0]=>3
[1,1,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0]=>0
[1,1,1,0,0,0,1,0,1,1,0,0]=>0
[1,1,1,0,0,0,1,1,0,0,1,0]=>0
[1,1,1,0,0,0,1,1,0,1,0,0]=>1
[1,1,1,0,0,0,1,1,1,0,0,0]=>0
[1,1,1,0,0,1,0,0,1,0,1,0]=>1
[1,1,1,0,0,1,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,1,0,0]=>0
[1,1,1,0,0,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,1,0,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,1,0,0,0]=>2
[1,1,1,0,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>2
[1,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,1,0,1,1,0,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,1,1,0,1,1,1,0,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0,1,0]=>0
[1,1,1,1,0,0,0,0,1,1,0,0]=>0
[1,1,1,1,0,0,0,1,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,1,0,0]=>1
[1,1,1,1,0,0,0,1,1,0,0,0]=>1
[1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,1,0,0,0,1,0,0]=>3
[1,1,1,1,0,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,1,0,0,0,0]=>3
[1,1,1,1,0,1,1,0,0,0,0,0]=>3
[1,1,1,1,1,0,0,0,0,0,1,0]=>0
[1,1,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,1,1,1,0,0,0,1,0,0,0]=>2
[1,1,1,1,1,0,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,1,0,0,0,0,0]=>4
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra.
References
[1] Marczinzik, R. Upper bounds for the dominant dimension of Nakayama and related algebras arXiv:1605.09634
Code
DeclareOperation("numberofprojwithdomdimequalinjdim2", [IsList]); InstallMethod(numberofprojwithdomdimequalinjdim2, "for a representation of a quiver", [IsList],0,function(L) local list, n, temp1, Liste_d, j, i, k, r, kk; list:=L; A:=NakayamaAlgebra(list,GF(3)); projA:=IndecProjectiveModules(A);prinA:=Filtered(projA,x->IsInjectiveModule(x)=false); tempp:=[];for i in prinA do Append(tempp,[InjDimensionOfModule(i,30)-DominantDimensionOfModule(i,30)]);od; UU:=Filtered(tempp,x->(x=0)); return(Size(prinA)-Size(UU)); end );
Created
Jan 14, 2018 at 19:21 by Rene Marczinzik
Updated
Jan 14, 2018 at 19:21 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!