searching the database
Your data matches 33 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001089
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
St001089: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 1
Description
Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra.
Matching statistic: St001876
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 40% ●values known / values provided: 57%●distinct values known / distinct values provided: 40%
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 40% ●values known / values provided: 57%●distinct values known / distinct values provided: 40%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([(0,1)],2)
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 3
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,10),(2,10),(4,9),(5,9),(6,7),(7,4),(7,5),(8,1),(8,2),(9,8),(10,3)],11)
=> ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? = 3
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,8),(2,10),(3,10),(4,9),(5,9),(6,7),(7,2),(7,3),(8,4),(8,5),(9,6),(10,1)],11)
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,9),(2,15),(3,14),(4,11),(5,13),(6,7),(6,14),(7,5),(7,10),(8,1),(9,3),(9,6),(10,13),(10,15),(11,8),(12,11),(13,12),(14,2),(14,10),(15,4),(15,12)],16)
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,9),(2,15),(3,14),(4,11),(5,13),(6,7),(6,14),(7,5),(7,10),(8,1),(9,3),(9,6),(10,13),(10,15),(11,8),(12,11),(13,12),(14,2),(14,10),(15,4),(15,12)],16)
=> ? = 0
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,9),(1,11),(2,13),(4,12),(5,12),(6,10),(7,6),(7,13),(8,4),(8,5),(9,2),(9,7),(10,11),(11,8),(12,3),(13,1),(13,10)],14)
=> ? = 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,10),(1,14),(3,13),(4,18),(5,17),(6,12),(7,8),(7,17),(8,3),(8,11),(9,6),(9,16),(10,5),(10,7),(11,13),(11,14),(12,18),(13,15),(14,9),(14,15),(15,16),(16,4),(16,12),(17,1),(17,11),(18,2)],19)
=> ? = 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,8),(2,9),(3,9),(4,10),(5,10),(6,1),(7,4),(7,5),(8,2),(8,3),(9,7),(10,6)],11)
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,9),(2,13),(3,12),(4,11),(5,11),(6,10),(7,6),(7,12),(8,3),(8,7),(9,4),(9,5),(10,13),(11,8),(12,2),(12,10),(13,1)],14)
=> ? = 2
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,8),(2,9),(3,9),(4,10),(5,10),(6,1),(7,4),(7,5),(8,2),(8,3),(9,7),(10,6)],11)
=> ? = 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,9),(1,12),(2,13),(4,11),(5,10),(6,1),(6,11),(7,3),(8,5),(8,14),(9,4),(9,6),(10,13),(11,8),(11,12),(12,14),(13,7),(14,2),(14,10)],15)
=> ? = 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ([(0,10),(1,16),(3,12),(4,11),(5,13),(6,14),(7,6),(7,12),(8,4),(8,17),(9,5),(9,15),(10,3),(10,7),(11,16),(12,9),(12,14),(13,17),(14,15),(15,8),(15,13),(16,2),(17,1),(17,11)],18)
=> ? = 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ?
=> ? = 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,9),(1,12),(2,13),(4,11),(5,10),(6,1),(6,11),(7,3),(8,5),(8,14),(9,4),(9,6),(10,13),(11,8),(11,12),(12,14),(13,7),(14,2),(14,10)],15)
=> ? = 2
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St001687
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St001687: Permutations ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 80%
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St001687: Permutations ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [2,1] => [2,1] => [1,2] => 0
[1,0,1,0]
=> [3,1,2] => [3,1,2] => [1,3,2] => 0
[1,1,0,0]
=> [2,3,1] => [3,2,1] => [1,2,3] => 0
[1,0,1,0,1,0]
=> [4,1,2,3] => [4,1,2,3] => [1,4,3,2] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [4,3,1,2] => [1,2,4,3] => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => [1,3,4,2] => 0
[1,1,0,1,0,0]
=> [4,3,1,2] => [3,1,4,2] => [2,4,1,3] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,3,2,1] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,1,2,3,4] => [1,5,4,3,2] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,4,1,2,3] => [1,2,5,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => [1,3,5,4,2] => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [4,1,2,5,3] => [2,5,4,1,3] => 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,4,3,1,2] => [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,4,5,3,2] => 0
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,4,2,1,3] => [1,2,4,5,3] => 0
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,5,2,4] => [3,5,1,4,2] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [4,1,5,2,3] => [2,5,1,4,3] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,1,5,4,2] => [3,5,1,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,3,2,1,4] => [1,3,4,5,2] => 0
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,2,1,5,3] => [2,4,5,1,3] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,3,1,5,2] => [2,3,5,1,4] => 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,1,2,3,4,5] => [1,6,5,4,3,2] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,5,1,2,3,4] => [1,2,6,5,4,3] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,4,1,2,3,5] => [1,3,6,5,4,2] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [5,1,2,3,6,4] => [2,6,5,4,1,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,5,4,1,2,3] => [1,2,3,6,5,4] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,3,1,2,4,5] => [1,4,6,5,3,2] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,5,3,1,2,4] => [1,2,4,6,5,3] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,1,2,6,3,5] => [3,6,5,1,4,2] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [5,1,2,6,3,4] => [2,6,5,1,4,3] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [4,1,2,6,5,3] => [3,6,5,1,2,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,4,3,1,2,5] => [1,3,4,6,5,2] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,3,1,2,6,4] => [2,4,6,5,1,3] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [5,4,1,2,6,3] => [2,3,6,5,1,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,5,4,3,1,2] => [1,2,3,4,6,5] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => [1,5,6,4,3,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,5,2,1,3,4] => [1,2,5,6,4,3] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,4,2,1,3,5] => [1,3,5,6,4,2] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,2,1,3,6,4] => [2,5,6,4,1,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,5,4,2,1,3] => [1,2,3,5,6,4] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,1,6,2,4,5] => [4,6,1,5,3,2] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,1,6,5,2,4] => [4,6,1,2,5,3] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,1,6,2,3,5] => [3,6,1,5,4,2] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [6,1,5,2,3,4] => [1,6,2,5,4,3] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,1,6,5,2,3] => [3,6,1,2,5,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,1,6,4,2,5] => [4,6,1,3,5,2] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,1,5,2,6,4] => [4,6,2,5,1,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [5,4,1,6,2,3] => [2,3,6,1,5,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,1,6,5,4,2] => [4,6,1,2,3,5] => 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [7,1,2,3,4,5,6] => [1,7,6,5,4,3,2] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [6,1,2,3,4,7,5] => [2,7,6,5,4,1,3] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [7,4,1,2,3,5,6] => [1,4,7,6,5,3,2] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [5,1,2,3,7,4,6] => [3,7,6,5,1,4,2] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [6,1,2,3,7,4,5] => [2,7,6,5,1,4,3] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [5,1,2,3,7,6,4] => [3,7,6,5,1,2,4] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [6,4,1,2,3,7,5] => [2,4,7,6,5,1,3] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [6,5,1,2,3,7,4] => [2,3,7,6,5,1,4] => ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [7,3,1,2,4,5,6] => [1,5,7,6,4,3,2] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [6,3,1,2,4,7,5] => [2,5,7,6,4,1,3] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [4,1,2,7,3,5,6] => [4,7,6,1,5,3,2] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [4,1,2,7,6,3,5] => [4,7,6,1,2,5,3] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,1,2,7,3,4,6] => [3,7,6,1,5,4,2] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [7,1,2,6,3,4,5] => [1,7,6,2,5,4,3] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,1,2,7,6,3,4] => [3,7,6,1,2,5,4] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [4,1,2,7,5,3,6] => [4,7,6,1,3,5,2] => ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [4,1,2,6,3,7,5] => [4,7,6,2,5,1,3] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [6,5,1,2,7,3,4] => [2,3,7,6,1,5,4] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [4,1,2,7,6,5,3] => [4,7,6,1,2,3,5] => ? = 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [5,3,1,2,7,4,6] => [3,5,7,6,1,4,2] => ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [6,3,1,2,7,4,5] => [2,5,7,6,1,4,3] => ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [5,3,1,2,7,6,4] => [3,5,7,6,1,2,4] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => [5,4,1,2,7,3,6] => [3,4,7,6,1,5,2] => ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [6,4,1,2,7,3,5] => [2,4,7,6,1,5,3] => ? = 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,1,2,6,3,7,4] => [3,7,6,2,5,1,4] => ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [5,4,1,2,7,6,3] => [3,4,7,6,1,2,5] => ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [6,4,3,1,2,7,5] => [2,4,5,7,6,1,3] => ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [6,5,3,1,2,7,4] => [2,3,5,7,6,1,4] => ? = 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [6,5,4,1,2,7,3] => [2,3,4,7,6,1,5] => ? = 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => [7,2,1,3,4,5,6] => [1,6,7,5,4,3,2] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => [6,2,1,3,4,7,5] => [2,6,7,5,4,1,3] => ? = 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [7,4,2,1,3,5,6] => [1,4,6,7,5,3,2] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => [5,2,1,3,7,4,6] => [3,6,7,5,1,4,2] => ? = 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [6,2,1,3,7,4,5] => [2,6,7,5,1,4,3] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => [5,2,1,3,7,6,4] => [3,6,7,5,1,2,4] => ? = 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => [6,4,2,1,3,7,5] => [2,4,6,7,5,1,3] => ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => [6,5,2,1,3,7,4] => [2,3,6,7,5,1,4] => ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [3,1,7,2,4,5,6] => [5,7,1,6,4,3,2] => ? = 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [6,3,1,2,4,7,5] => [3,1,7,6,2,4,5] => [5,7,1,2,6,4,3] => ? = 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [5,3,1,2,7,4,6] => [3,1,7,5,2,4,6] => [5,7,1,3,6,4,2] => ? = 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => [3,1,6,2,4,7,5] => [5,7,2,6,4,1,3] => ? = 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [5,3,1,2,6,7,4] => [3,1,7,6,5,2,4] => [5,7,1,2,3,6,4] => ? = 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [4,1,7,2,3,5,6] => [4,7,1,6,5,3,2] => ? = 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [4,1,7,6,2,3,5] => [4,7,1,2,6,5,3] => ? = 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [7,1,5,2,3,4,6] => [1,7,3,6,5,4,2] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [6,1,7,2,3,4,5] => [2,7,1,6,5,4,3] => ? = 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [4,1,7,5,2,3,6] => [4,7,1,3,6,5,2] => ? = 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [4,1,6,2,3,7,5] => [4,7,2,6,5,1,3] => ? = 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [6,1,7,5,2,3,4] => [2,7,1,3,6,5,4] => ? = 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [4,1,7,6,5,2,3] => [4,7,1,2,3,6,5] => ? = 1
Description
The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation.
Matching statistic: St000375
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
Mp00257: Permutations —Alexandersson Kebede⟶ Permutations
St000375: Permutations ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 80%
Mp00066: Permutations —inverse⟶ Permutations
Mp00257: Permutations —Alexandersson Kebede⟶ Permutations
St000375: Permutations ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [2,1] => [2,1] => [2,1] => 0
[1,0,1,0]
=> [3,1,2] => [2,3,1] => [3,2,1] => 0
[1,1,0,0]
=> [2,3,1] => [3,1,2] => [1,3,2] => 0
[1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [3,2,4,1] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => [4,2,1,3] => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => [3,1,4,2] => [1,3,4,2] => 0
[1,1,0,1,0,0]
=> [4,3,1,2] => [3,4,2,1] => [4,3,2,1] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => [1,4,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => [3,2,4,5,1] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,3,5,1,4] => [3,2,5,1,4] => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [2,4,1,5,3] => [4,2,1,5,3] => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [2,4,5,3,1] => [4,2,5,3,1] => 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => [5,2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => [1,3,4,5,2] => 0
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => [1,3,5,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,4,2,5,1] => [4,3,2,5,1] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,4,5,2,1] => [4,3,5,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,5,2,1,4] => [5,3,2,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,1,2,5,3] => [1,4,2,5,3] => 0
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,5,3,2] => [1,4,5,3,2] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,5,2,3,1] => [5,4,2,3,1] => 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,5,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => [3,2,4,5,6,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,3,4,6,1,5] => [3,2,4,6,1,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [2,3,5,1,6,4] => [3,2,5,1,6,4] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [2,3,5,6,4,1] => [3,2,5,6,4,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [2,3,6,1,4,5] => [3,2,6,1,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [2,4,1,5,6,3] => [4,2,1,5,6,3] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [2,4,1,6,3,5] => [4,2,1,6,3,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [2,4,5,3,6,1] => [4,2,5,3,6,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [2,4,5,6,3,1] => [4,2,5,6,3,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,4,6,3,1,5] => [4,2,6,3,1,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [2,5,1,3,6,4] => [5,2,1,3,6,4] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [2,5,1,6,4,3] => [5,2,1,6,4,3] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [2,5,6,3,4,1] => [5,2,6,3,4,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [2,6,1,3,4,5] => [6,2,1,3,4,5] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [3,1,4,5,6,2] => [1,3,4,5,6,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [3,1,4,6,2,5] => [1,3,4,6,2,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [3,1,5,2,6,4] => [1,3,5,2,6,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [3,1,5,6,4,2] => [1,3,5,6,4,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [3,1,6,2,4,5] => [1,3,6,2,4,5] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,4,2,5,6,1] => [4,3,2,5,6,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,4,2,6,1,5] => [4,3,2,6,1,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [3,4,5,2,6,1] => [4,3,5,2,6,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,4,5,6,1,2] => [4,3,5,6,1,2] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [3,4,6,2,1,5] => [4,3,6,2,1,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,5,2,1,6,4] => [5,3,2,1,6,4] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,5,2,6,4,1] => [5,3,2,6,4,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,5,6,2,4,1] => [5,3,6,2,4,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,6,2,1,4,5] => [6,3,2,1,4,5] => 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [2,3,4,5,6,7,1] => [3,2,4,5,6,7,1] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [2,3,4,5,7,1,6] => [3,2,4,5,7,1,6] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,4,6,1,7,5] => [3,2,4,6,1,7,5] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [2,3,4,6,7,5,1] => [3,2,4,6,7,5,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [2,3,4,7,1,5,6] => [3,2,4,7,1,5,6] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,3,5,1,6,7,4] => [3,2,5,1,6,7,4] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [2,3,5,1,7,4,6] => [3,2,5,1,7,4,6] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [2,3,5,6,4,7,1] => [3,2,5,6,4,7,1] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [2,3,5,6,7,4,1] => [3,2,5,6,7,4,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [2,3,5,7,4,1,6] => [3,2,5,7,4,1,6] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [2,3,6,1,4,7,5] => [3,2,6,1,4,7,5] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [2,3,6,1,7,5,4] => [3,2,6,1,7,5,4] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [2,3,6,7,4,5,1] => [3,2,6,7,4,5,1] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [2,3,7,1,4,5,6] => [3,2,7,1,4,5,6] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [2,4,1,5,6,7,3] => [4,2,1,5,6,7,3] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [2,4,1,5,7,3,6] => [4,2,1,5,7,3,6] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [2,4,1,6,3,7,5] => [4,2,1,6,3,7,5] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [2,4,1,6,7,5,3] => [4,2,1,6,7,5,3] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [2,4,1,7,3,5,6] => [4,2,1,7,3,5,6] => ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [2,4,5,3,6,7,1] => [4,2,5,3,6,7,1] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [2,4,5,3,7,1,6] => [4,2,5,3,7,1,6] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [2,4,5,6,3,7,1] => [4,2,5,6,3,7,1] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [2,4,5,6,7,1,3] => [4,2,5,6,7,1,3] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [2,4,5,7,3,1,6] => [4,2,5,7,3,1,6] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [2,4,6,3,1,7,5] => [4,2,6,3,1,7,5] => ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [2,4,6,3,7,5,1] => [4,2,6,3,7,5,1] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [2,4,6,7,3,5,1] => [4,2,6,7,3,5,1] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [2,4,7,3,1,5,6] => [4,2,7,3,1,5,6] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [2,5,1,3,6,7,4] => [5,2,1,3,6,7,4] => ? = 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [2,5,1,3,7,4,6] => [5,2,1,3,7,4,6] => ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [2,5,1,6,4,7,3] => [5,2,1,6,4,7,3] => ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [2,5,1,6,7,4,3] => [5,2,1,6,7,4,3] => ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [2,5,1,7,4,3,6] => [5,2,1,7,4,3,6] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => [2,5,6,3,4,7,1] => [5,2,6,3,4,7,1] => ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [2,5,6,3,7,4,1] => [5,2,6,3,7,4,1] => ? = 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [2,5,6,7,4,3,1] => [5,2,6,7,4,3,1] => ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [2,5,7,3,4,1,6] => [5,2,7,3,4,1,6] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => [2,6,1,3,4,7,5] => [6,2,1,3,4,7,5] => ? = 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [2,6,1,3,7,5,4] => [6,2,1,3,7,5,4] => ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [2,6,1,7,4,5,3] => [6,2,1,7,4,5,3] => ? = 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [2,6,7,3,4,5,1] => [6,2,7,3,4,5,1] => ? = 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => [2,7,1,3,4,5,6] => [7,2,1,3,4,5,6] => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [3,4,2,5,6,7,1] => [4,3,2,5,6,7,1] => ? = 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [6,3,1,2,4,7,5] => [3,4,2,5,7,1,6] => [4,3,2,5,7,1,6] => ? = 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [5,3,1,2,7,4,6] => [3,4,2,6,1,7,5] => [4,3,2,6,1,7,5] => ? = 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => [3,4,2,6,7,5,1] => [4,3,2,6,7,5,1] => ? = 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [5,3,1,2,6,7,4] => [3,4,2,7,1,5,6] => [4,3,2,7,1,5,6] => ? = 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [3,4,5,2,6,7,1] => [4,3,5,2,6,7,1] => ? = 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [3,4,5,2,7,1,6] => [4,3,5,2,7,1,6] => ? = 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [3,4,5,6,1,7,2] => [4,3,5,6,1,7,2] => ? = 0
Description
The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length 3.
Given a permutation π=[π1,…,πn], this statistic counts the number of position j such that πj<j and there exist indices i,k with i<j<k and πi>πj>πk.
See also [[St000213]] and [[St000119]].
Matching statistic: St000371
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
St000371: Permutations ⟶ ℤResult quality: 41% ●values known / values provided: 41%●distinct values known / distinct values provided: 80%
St000371: Permutations ⟶ ℤResult quality: 41% ●values known / values provided: 41%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [2,1] => 0
[1,0,1,0]
=> [3,1,2] => 0
[1,1,0,0]
=> [2,3,1] => 0
[1,0,1,0,1,0]
=> [4,1,2,3] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => 0
[1,1,0,1,0,0]
=> [4,3,1,2] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => 0
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 0
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => ? = 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => ? = 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => ? = 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 0
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => ? = 2
Description
The number of mid points of decreasing subsequences of length 3 in a permutation.
For a permutation π of {1,…,n}, this is the number of indices j such that there exist indices i,k with i<j<k and π(i)>π(j)>π(k). In other words, this is the number of indices that are neither left-to-right maxima nor right-to-left minima.
This statistic can also be expressed as the number of occurrences of the mesh pattern ([3,2,1], {(0,2),(0,3),(2,0),(3,0)}): the shading fixes the first and the last element of the decreasing subsequence.
See also [[St000119]].
Matching statistic: St000373
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
St000373: Permutations ⟶ ℤResult quality: 41% ●values known / values provided: 41%●distinct values known / distinct values provided: 80%
St000373: Permutations ⟶ ℤResult quality: 41% ●values known / values provided: 41%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [2,1] => 0
[1,0,1,0]
=> [3,1,2] => 0
[1,1,0,0]
=> [2,3,1] => 0
[1,0,1,0,1,0]
=> [4,1,2,3] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => 0
[1,1,0,1,0,0]
=> [4,3,1,2] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => 0
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 0
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => ? = 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => ? = 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => ? = 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 0
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => ? = 2
Description
The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length 3.
Given a permutation π=[π1,…,πn], this statistic counts the number of position j such that πj≥j and there exist indices i,k with i<j<k and πi>πj>πk.
See also [[St000213]] and [[St000119]].
Matching statistic: St000372
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000372: Permutations ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 80%
Mp00069: Permutations —complement⟶ Permutations
St000372: Permutations ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [2,1] => [1,2] => 0
[1,0,1,0]
=> [3,1,2] => [1,3,2] => 0
[1,1,0,0]
=> [2,3,1] => [2,1,3] => 0
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,4,3,2] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => [3,1,4,2] => 0
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,2,4,3] => 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [3,2,1,4] => 0
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,5,4,3,2] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,5,4,1,3] => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,5,2,4,3] => 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => 0
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 0
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,5,4,2] => 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [2,3,5,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => 0
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,2,5,3] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,3,2,5,4] => 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,6,5,4,3,2] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,6,5,4,1,3] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [3,6,5,1,4,2] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,6,5,2,4,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [3,6,5,2,1,4] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [4,6,1,5,3,2] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [4,6,2,5,1,3] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,6,3,5,4,2] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,6,2,5,4,3] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,6,3,5,1,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [4,6,3,1,5,2] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [4,6,1,2,5,3] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,6,3,2,5,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [4,6,3,2,1,5] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [5,1,6,4,3,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [5,2,6,4,1,3] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [5,3,6,1,4,2] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,1,6,2,4,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [5,3,6,2,1,4] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,4,6,5,3,2] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [2,4,6,5,1,3] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,3,6,5,4,2] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [2,1,6,5,4,3] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [2,3,6,5,1,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,4,6,1,5,2] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,4,6,2,5,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,3,6,2,5,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,4,6,2,1,5] => 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [1,7,6,5,4,3,2] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [2,7,6,5,4,1,3] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [3,7,6,5,1,4,2] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [1,7,6,5,2,4,3] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [3,7,6,5,2,1,4] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [4,7,6,1,5,3,2] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [4,7,6,2,5,1,3] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [1,7,6,3,5,4,2] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [1,7,6,2,5,4,3] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [2,7,6,3,5,1,4] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [4,7,6,3,1,5,2] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [4,7,6,1,2,5,3] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [1,7,6,3,2,5,4] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [4,7,6,3,2,1,5] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [5,7,1,6,4,3,2] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [5,7,2,6,4,1,3] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [5,7,3,6,1,4,2] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [5,7,1,6,2,4,3] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [5,7,3,6,2,1,4] => ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [1,7,4,6,5,3,2] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [2,7,4,6,5,1,3] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [1,7,3,6,5,4,2] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [2,7,1,6,5,4,3] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [2,7,3,6,5,1,4] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [3,7,4,6,1,5,2] => ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [1,7,4,6,2,5,3] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [1,7,3,6,2,5,4] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [3,7,4,6,2,1,5] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [5,7,4,1,6,3,2] => ? = 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [5,7,4,2,6,1,3] => ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [5,7,1,3,6,4,2] => ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [5,7,1,2,6,4,3] => ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [5,7,2,3,6,1,4] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => [1,7,4,3,6,5,2] => ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [1,7,4,2,6,5,3] => ? = 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [1,7,2,3,6,5,4] => ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [2,7,4,3,6,1,5] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => [5,7,4,3,1,6,2] => ? = 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [5,7,4,1,2,6,3] => ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [5,7,1,3,2,6,4] => ? = 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [1,7,4,3,2,6,5] => ? = 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => [5,7,4,3,2,1,6] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => [6,1,7,5,4,3,2] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [6,2,7,5,4,1,3] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => [6,3,7,5,1,4,2] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => [6,1,7,5,2,4,3] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [6,3,7,5,2,1,4] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [6,4,7,1,5,3,2] => ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [6,4,7,2,5,1,3] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => [6,1,7,3,5,4,2] => ? = 1
Description
The number of mid points of increasing subsequences of length 3 in a permutation.
For a permutation π of {1,…,n}, this is the number of indices j such that there exist indices i,k with i<j<k and π(i)<π(j)<π(k).
The generating function is given by [1].
Matching statistic: St001624
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 40%
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 40%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 3 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,10),(2,10),(4,9),(5,9),(6,7),(7,4),(7,5),(8,1),(8,2),(9,8),(10,3)],11)
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 2 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 2 + 1
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer b such that any join x1∨x2∨⋯∨xn, with n>b, can be expressed as a join over a proper subset of {x1,x2,…,xn}.
Matching statistic: St001877
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 40%
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 40%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([(0,1)],2)
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 3
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,10),(2,10),(4,9),(5,9),(6,7),(7,4),(7,5),(8,1),(8,2),(9,8),(10,3)],11)
=> ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St000441
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000441: Permutations ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 40%
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000441: Permutations ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 40%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 0
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 0
[1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => [4,3,2,1] => 0
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 0
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => [2,1,6,5,4,3] => 0
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => [4,3,2,1,6,5] => 0
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => [6,5,3,4,2,1] => 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => [6,5,4,3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 0
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => [2,1,4,3,8,7,6,5] => 0
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => [2,1,6,5,4,3,8,7] => 0
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => [2,1,8,7,5,6,4,3] => ? = 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => [2,1,8,7,6,5,4,3] => 0
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 0
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => [4,3,2,1,8,7,6,5] => 0
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => [6,5,3,4,2,1,8,7] => ? = 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,5,3,7,2,6,4,1] => ? = 1
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => [8,7,3,6,5,4,2,1] => ? = 1
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 0
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => [8,5,7,4,2,6,3,1] => ? = 1
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => [8,7,6,4,5,3,2,1] => ? = 2
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => [8,7,6,5,4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => [2,1,4,3,6,5,10,9,8,7] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => [2,1,4,3,10,9,7,8,6,5] => ? = 1
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,5,6,4,3,9,10,8,7] => [2,1,6,5,4,3,10,9,8,7] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => [2,1,8,7,5,6,4,3,10,9] => ? = 1
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => [2,1,10,7,5,9,4,8,6,3] => ? = 1
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => [2,1,10,9,5,8,7,6,4,3] => ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => [2,1,10,7,9,6,4,8,5,3] => ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => [2,1,10,9,8,6,7,5,4,3] => ? = 2
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [3,4,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [3,4,2,1,6,5,9,10,8,7] => [4,3,2,1,6,5,10,9,8,7] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => [4,3,2,1,10,9,7,8,6,5] => ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [3,5,2,6,4,1,8,7,10,9] => [6,5,3,4,2,1,8,7,10,9] => ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => [6,5,3,4,2,1,10,9,8,7] => ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => [8,5,3,7,2,6,4,1,10,9] => ? = 1
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => [10,5,3,7,2,9,4,8,6,1] => ? = 0
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => [10,5,3,9,2,8,7,6,4,1] => ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => [8,7,3,6,5,4,2,1,10,9] => ? = 1
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => [10,7,3,6,9,4,2,8,5,1] => ? = 2
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [3,6,2,8,9,5,10,7,4,1] => [10,9,3,8,6,5,7,4,2,1] => ? = 2
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? = 1
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 0
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => [6,5,4,3,2,1,10,9,8,7] => 0
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => [8,5,7,4,2,6,3,1,10,9] => ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => [10,5,7,4,2,9,3,8,6,1] => ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [4,5,8,3,2,9,10,7,6,1] => [10,5,9,4,2,8,7,6,3,1] => ? = 1
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => [8,7,6,4,5,3,2,1,10,9] => ? = 2
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => [10,7,6,4,9,3,2,8,5,1] => ? = 2
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? = 2
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? = 2
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 0
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [5,6,7,9,4,3,2,10,8,1] => [10,7,6,9,5,3,2,8,4,1] => ? = 1
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [5,6,8,9,4,3,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? = 2
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? = 3
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [6,7,8,9,10,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,11,12,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,9,10,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,9,11,8,12,10,7] => [2,1,4,3,6,5,12,11,9,10,8,7] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,10,11,12,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,7,8,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,7,8,6,5,11,12,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,7,9,6,10,8,5,12,11] => [2,1,4,3,10,9,7,8,6,5,12,11] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,7,9,6,11,8,12,10,5] => [2,1,4,3,12,9,7,11,6,10,8,5] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,7,10,6,11,12,9,8,5] => [2,1,4,3,12,11,7,10,9,8,6,5] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,8,9,10,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,8,9,11,7,6,12,10,5] => [2,1,4,3,12,9,11,8,6,10,7,5] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,8,10,11,7,12,9,6,5] => [2,1,4,3,12,11,10,8,9,7,6,5] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,9,10,11,12,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,5,6,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,5,6,4,3,8,7,11,12,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> [2,1,5,6,4,3,9,10,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,5,6,4,3,9,11,8,12,10,7] => [2,1,6,5,4,3,12,11,9,10,8,7] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> [2,1,5,6,4,3,10,11,12,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,5,7,4,8,6,3,10,9,12,11] => [2,1,8,7,5,6,4,3,10,9,12,11] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,5,7,4,8,6,3,11,12,10,9] => [2,1,8,7,5,6,4,3,12,11,10,9] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,5,7,4,9,6,10,8,3,12,11] => [2,1,10,7,5,9,4,8,6,3,12,11] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,5,7,4,9,6,11,8,12,10,3] => [2,1,12,7,5,9,4,11,6,10,8,3] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,5,7,4,10,6,11,12,9,8,3] => [2,1,12,7,5,11,4,10,9,8,6,3] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,5,8,4,9,10,7,6,3,12,11] => [2,1,10,9,5,8,7,6,4,3,12,11] => ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,5,8,4,9,11,7,6,12,10,3] => [2,1,12,9,5,8,11,6,4,10,7,3] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,5,8,4,10,11,7,12,9,6,3] => [2,1,12,11,5,10,8,7,9,6,4,3] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,5,9,4,10,11,12,8,7,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> [2,1,6,7,8,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> [2,1,6,7,8,5,4,3,11,12,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,6,7,9,5,4,10,8,3,12,11] => [2,1,10,7,9,6,4,8,5,3,12,11] => ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,6,7,9,5,4,11,8,12,10,3] => [2,1,12,7,9,6,4,11,5,10,8,3] => ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> [2,1,7,8,9,10,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> [3,4,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> [3,4,2,1,6,5,8,7,11,12,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 0
Description
The number of successions of a permutation.
A succession of a permutation π is an index i such that π(i)+1=π(i+1). Successions are also known as ''small ascents'' or ''1-rises''.
The following 23 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000665The number of rafts of a permutation. St000731The number of double exceedences of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000451The length of the longest pattern of the form k 1 2. St001330The hat guessing number of a graph. St000058The order of a permutation. St000223The number of nestings in the permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001862The number of crossings of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000877The depth of the binary word interpreted as a path. St001513The number of nested exceedences of a permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001823The Stasinski-Voll length of a signed permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001946The number of descents in a parking function. St001960The number of descents of a permutation minus one if its first entry is not one. St000864The number of circled entries of the shifted recording tableau of a permutation. St001194The injective dimension of A/AfA in the corresponding Nakayama algebra A when Af is the minimal faithful projective-injective left A-module St000822The Hadwiger number of the graph. St001394The genus of a permutation. St000352The Elizalde-Pak rank of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!