Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
St001096: Permutations ⟶ ℤ
Values
[1] => [1,0] => [(1,2)] => [2,1] => 1
[1,1] => [1,0,1,0] => [(1,2),(3,4)] => [2,1,4,3] => 2
[2] => [1,1,0,0] => [(1,4),(2,3)] => [3,4,2,1] => 1
[1,1,1] => [1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => 3
[1,2] => [1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [2,1,5,6,4,3] => 2
[2,1] => [1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [3,4,2,1,6,5] => 1
[3] => [1,1,1,0,0,0] => [(1,6),(2,5),(3,4)] => [4,5,6,3,2,1] => 1
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => 4
[2,2] => [1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => [3,4,2,1,7,8,6,5] => 2
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 5
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The size of the overlap set of a permutation.
For a permutation $\pi\in\mathfrak S_n$ this is the number of indices $i < n$ such that the standardisation of $\pi_1\dots\pi_{n-i}$ equals the standardisation of $\pi_{i+1}\dots\pi_n$. In particular, for $n > 1$, the statistic is at least one, because the standardisations of $\pi_1$ and $\pi_n$ are both $1$.
For example, for $\pi=2143$, the standardisations of $21$ and $43$ are equal, and so are the standardisations of $2$ and $3$. Thus, the statistic on $\pi$ is $2$.
For a permutation $\pi\in\mathfrak S_n$ this is the number of indices $i < n$ such that the standardisation of $\pi_1\dots\pi_{n-i}$ equals the standardisation of $\pi_{i+1}\dots\pi_n$. In particular, for $n > 1$, the statistic is at least one, because the standardisations of $\pi_1$ and $\pi_n$ are both $1$.
For example, for $\pi=2143$, the standardisations of $21$ and $43$ are equal, and so are the standardisations of $2$ and $3$. Thus, the statistic on $\pi$ is $2$.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!